This analysis uses ABCD Release 3
rm(list=ls())
gc()
library(tidyverse)
library(qgraph)
library(pander)
library(summarytools)
library(sjPlot)
library(sjmisc)
library(sjlabelled)
library(tidymodels)
library(knitr)
ACS <-read_csv(paste0(dataFold,"ACSPSW03_DATA_TABLE.csv"))
## Rows: 23113 Columns: 32
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (8): SUBJECTKEY, SRC_SUBJECT_ID, INTERVIEW_DATE, SEX, EVENTNAME, GENETI...
## dbl (16): ACSPSW03_ID, DATASET_ID, INTERVIEW_AGE, RACE_ETHNICITY, REL_FAMILY...
## lgl (8): GENETIC_PAIRED_SUBJECTID_4, GENETIC_PI_HAT_2, GENETIC_PI_HAT_3, GE...
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#knitr::kable(glimpse(ACS))
#race_ethnicity
#1 = White; 2 = Black; 3 = Hispanic; 4 = Asian; 5 = Other
# guardian-report relationship
# Relationship of the participant in his or her family
# 0 = single; 1 = sibling; 2 = twin; 3 = triplet
# ACS %>% count(REL_RELATIONSHIP)
ACSselected <- ACS %>%
select(SUBJECTKEY, EVENTNAME, SEX, INTERVIEW_AGE, RACE_ETHNICITY,
REL_FAMILY_ID, ACS_RAKED_PROPENSITY_SCORE) %>%
mutate(RACE_ETHNICITY = recode_factor(as.factor(RACE_ETHNICITY),
`1` = "White", `2` = "Black", `3` = "Hispanic", `4` = "Asian", `5` = "Other",
.default = "White")) %>%
mutate(SEX = as.factor(SEX)) %>%
mutate(REL_FAMILY_ID = as.factor(REL_FAMILY_ID))
ACSselected %>%
filter(EVENTNAME =="baseline_year_1_arm_1") %>%
skimr::skim()
Name | Piped data |
Number of rows | 11878 |
Number of columns | 7 |
_______________________ | |
Column type frequency: | |
character | 2 |
factor | 3 |
numeric | 2 |
________________________ | |
Group variables | None |
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
SUBJECTKEY | 0 | 1 | 12 | 16 | 0 | 11878 | 0 |
EVENTNAME | 0 | 1 | 21 | 21 | 0 | 1 | 0 |
Variable type: factor
skim_variable | n_missing | complete_rate | ordered | n_unique | top_counts |
---|---|---|---|---|---|
SEX | 0 | 1 | FALSE | 2 | M: 6196, F: 5682 |
RACE_ETHNICITY | 2 | 1 | FALSE | 5 | Whi: 6182, His: 2411, Bla: 1784, Oth: 1247 |
REL_FAMILY_ID | 0 | 1 | FALSE | 9856 | 373: 5, 749: 4, 11: 3, 400: 3 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
INTERVIEW_AGE | 0 | 1 | 118.98 | 7.50 | 107.00 | 112.00 | 119.00 | 126.00 | 133.00 | ▇▆▆▆▆ |
ACS_RAKED_PROPENSITY_SCORE | 0 | 1 | 691.33 | 350.96 | 161.36 | 449.42 | 619.31 | 821.72 | 1778.92 | ▅▇▂▂▁ |
###loading site and scanner information
MRIinfo <-tibble::as_tibble(read.csv(paste0(dataFold, "ABCD_MRI01_DATA_TABLE.csv")))
Siteinfo <-tibble::as_tibble(read.csv(paste0(dataFold, "ABCD_LT01_DATA_TABLE.csv")))
MRIinfo %>% count(EVENTNAME,SEX)
## # A tibble: 4 × 3
## EVENTNAME SEX n
## <chr> <chr> <int>
## 1 2_year_follow_up_y_arm_1 F 2617
## 2 2_year_follow_up_y_arm_1 M 3076
## 3 baseline_year_1_arm_1 F 5631
## 4 baseline_year_1_arm_1 M 6161
MriandSite <- left_join(MRIinfo,Siteinfo, by=c('SUBJECTKEY','EVENTNAME')) %>%
select(SUBJECTKEY,EVENTNAME,SITE_ID_L, MRI_INFO_DEVICESERIALNUMBER )
#glimpse(MriandSite)
# probably drop site22 with 34 subjects
MriandSite %>%
filter(EVENTNAME =="baseline_year_1_arm_1") %>%
count(SITE_ID_L)
## # A tibble: 22 × 2
## SITE_ID_L n
## <chr> <int>
## 1 site01 402
## 2 site02 554
## 3 site03 631
## 4 site04 747
## 5 site05 376
## 6 site06 584
## 7 site07 339
## 8 site08 350
## 9 site09 431
## 10 site10 735
## # … with 12 more rows
MriandSite %>%
filter(EVENTNAME =="baseline_year_1_arm_1") %>%
skimr::skim()
Name | Piped data |
Number of rows | 11792 |
Number of columns | 4 |
_______________________ | |
Column type frequency: | |
character | 4 |
________________________ | |
Group variables | None |
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
SUBJECTKEY | 0 | 1 | 12 | 16 | 0 | 11787 | 0 |
EVENTNAME | 0 | 1 | 21 | 21 | 0 | 1 | 0 |
SITE_ID_L | 0 | 1 | 6 | 6 | 0 | 22 | 0 |
MRI_INFO_DEVICESERIALNUMBER | 0 | 1 | 0 | 12 | 201 | 30 | 0 |
NIH_TB <-as_tibble(read.csv(paste0(dataFold,"ABCD_TBSS01_DATA_TABLE.csv")))
CashChoice <-as_tibble(read.csv(paste0(dataFold,"CCT01_DATA_TABLE.csv")))
LittleMan <-as_tibble(read.csv(paste0(dataFold,"LMTP201_DATA_TABLE.csv")))
Pearson <-as_tibble(read.csv(paste0(dataFold,"ABCD_PS01_DATA_TABLE.csv")))
#ABCD Youth Delay Discounting Scores only used in the follow up data
DelayDis <-as_tibble(read.csv(paste0(dataFold,"ABCD_YDDSS01_DATA_TABLE.csv")))
#ABCD Emotional Stroop Task only used in the follow up data
EmoStroop <-as_tibble(read.csv(paste0(dataFold,"ABCD_YEST01_DATA_TABLE.csv")))
#ABCD Game of Dice Task abcd_gdss01 only used in the follow up data
GameOfDice <-as_tibble(read.csv(paste0(dataFold,"ABCD_GDSS01_DATA_TABLE.csv")))
#ABCD Social Influence Task abcd_siss01 only used in the follow up data
SocialInfluence <-as_tibble(read.csv(paste0(dataFold,"ABCD_SISS01_DATA_TABLE.csv")))
vision_idx <- as_tibble(read.csv(paste0(dataFold,"ABCD_SVS01_DATA_TABLE.CSV"))) %>%
mutate(visionProb = ifelse(SNELLEN_VA_Y == 0 | SNELLEN_VA_Y == 1 | VIS_FLG == 2, 1, 0))
#vision_idx %>% select(SNELLEN_VA_Y, VIS_FLG, visionProb) %>% arrange(SNELLEN_VA_Y)
NIH_TB %>%
filter(EVENTNAME =="baseline_year_1_arm_1") %>%
select(ends_with("_UNCORRECTED")) %>%
skimr::skim()
Name | Piped data |
Number of rows | 11878 |
Number of columns | 10 |
_______________________ | |
Column type frequency: | |
numeric | 10 |
________________________ | |
Group variables | None |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
NIHTBX_PICVOCAB_UNCORRECTED | 149 | 0.99 | 84.46 | 8.12 | 29 | 79 | 84 | 90 | 119 | ▁▁▇▇▁ |
NIHTBX_FLANKER_UNCORRECTED | 155 | 0.99 | 94.00 | 9.14 | 51 | 89 | 95 | 100 | 116 | ▁▁▃▇▂ |
NIHTBX_LIST_UNCORRECTED | 198 | 0.98 | 96.65 | 12.09 | 36 | 90 | 97 | 105 | 136 | ▁▁▅▇▁ |
NIHTBX_CARDSORT_UNCORRECTED | 154 | 0.99 | 92.52 | 9.51 | 50 | 88 | 93 | 99 | 120 | ▁▁▆▇▁ |
NIHTBX_PATTERN_UNCORRECTED | 173 | 0.99 | 88.06 | 14.58 | 30 | 80 | 88 | 99 | 140 | ▁▃▇▅▁ |
NIHTBX_PICTURE_UNCORRECTED | 161 | 0.99 | 102.81 | 12.07 | 76 | 94 | 102 | 111 | 136 | ▃▇▇▅▁ |
NIHTBX_READING_UNCORRECTED | 163 | 0.99 | 90.86 | 6.91 | 59 | 87 | 91 | 95 | 119 | ▁▁▇▂▁ |
NIHTBX_FLUIDCOMP_UNCORRECTED | 237 | 0.98 | 91.55 | 10.66 | 44 | 85 | 92 | 99 | 131 | ▁▂▇▅▁ |
NIHTBX_CRYST_UNCORRECTED | 181 | 0.98 | 86.36 | 7.07 | 51 | 82 | 86 | 91 | 115 | ▁▁▇▃▁ |
NIHTBX_TOTALCOMP_UNCORRECTED | 241 | 0.98 | 86.22 | 9.14 | 44 | 81 | 87 | 92 | 117 | ▁▂▇▇▁ |
ABCD Cash Choice Task - Impulsivity, delayed gratification; this single-item task asked the child “Let’s pretend a kind person wanted to give you some money. Would you rather have $75 in three days or $115 in 3 months?”. The child indicates one of these two options or a third “can’t decide” option. See Wulfert, E., Block, J.A., Santa Ana, E., Rodriguez, M.L., & Colsman, M., 2002; Anokhin, A.P., Golosheykin, S., Grant, J.D. & Heath, A.C., 2011. Administered in Baseline assessment only.
ABCD Little Man Task - Visuospatial processing flexibility, attention; participants view pictures of a figure (little man) presented in different orientations and holding a suitcase and must use mental rotation skills to assess which hand (left or right) is holding the suitcase. Accuracy and latency scores are provided for each trial. For details, see Acker, W., & Acker, W., 1982; Nixon, S. J., Prather, R. A., & Lewis, B., 2014.
ABCD Pearson Scores - Rey Auditory Verbal Learning Test – Verbal learning and memory; the task is administered according to standard instructions using a 15-item word list; there are five learning trials (Trials I-V), a distractor trial (List B), measures of immediate recall (Trial VI) and 30-minute delayed recall (Trial VII); for all trials, the total correct is recorded together with the number of perseverations and intrusions. Details can be found in Strauss, E., Sherman, E.M.S., & Spreen, O., 2006; Lezak, M.D., Howieson, D.B., Bigler, E.D., & Tranel, D., 2012. Matrix Reasoning Task – Measures fluid intelligence, visuospatial reasoning; the task is from the Wechsler Intelligence Scale for Children-V and administered using Pearson Clinical Assessment-s Q-interactive platform. Total raw scores, scaled scores (ranging from 0-19; mean = 10, SD = 3) and scores for each item are available. See Wechsler, D., 2014; Daniel, M.H., Wahlstrom, D. & Zhang, O., 2014. Administered in Baseline assessment only.
CashChoice %>%
filter(EVENTNAME =="baseline_year_1_arm_1") %>%
select(CASH_CHOICE_TASK) %>%
skimr::skim()
Name | Piped data |
Number of rows | 11878 |
Number of columns | 1 |
_______________________ | |
Column type frequency: | |
numeric | 1 |
________________________ | |
Group variables | None |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
CASH_CHOICE_TASK | 20 | 1 | 1.62 | 0.52 | 1 | 1 | 2 | 2 | 3 | ▆▁▇▁▁ |
LittleMan %>%
filter(EVENTNAME =="baseline_year_1_arm_1") %>%
select(-1:-7) %>%
skimr::skim()
Name | Piped data |
Number of rows | 11878 |
Number of columns | 52 |
_______________________ | |
Column type frequency: | |
character | 2 |
logical | 2 |
numeric | 48 |
________________________ | |
Group variables | None |
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
EVENTNAME | 0 | 1 | 21 | 21 | 0 | 1 | 0 |
STUDY_COHORT_NAME | 0 | 1 | 21 | 21 | 0 | 1 | 0 |
Variable type: logical
skim_variable | n_missing | complete_rate | mean | count |
---|---|---|---|---|
LMT_RUN | 11878 | 0 | NaN | : |
LMT_SCR_EFFICIENCY | 11878 | 0 | NaN | : |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
LMT_SCR_PERC_CORRECT | 337 | 0.97 | 0.59 | 0.17 | 0.00 | 0.47 | 0.56 | 0.72 | 1.00 | ▁▂▇▅▂ |
LMT_SCR_PERC_WRONG | 337 | 0.97 | 0.31 | 0.17 | 0.00 | 0.16 | 0.31 | 0.44 | 0.84 | ▅▆▇▂▁ |
LMT_SCR_NUM_CORRECT | 337 | 0.97 | 18.84 | 5.45 | 0.00 | 15.00 | 18.00 | 23.00 | 32.00 | ▁▂▇▅▂ |
LMT_SCR_NUM_WRONG | 337 | 0.97 | 9.81 | 5.30 | 0.00 | 5.00 | 10.00 | 14.00 | 27.00 | ▅▆▇▂▁ |
LMT_SCR_NUM_TIMED_OUT | 337 | 0.97 | 3.34 | 2.72 | 0.00 | 1.00 | 3.00 | 5.00 | 32.00 | ▇▁▁▁▁ |
LMT_SCR_AVG_RT | 342 | 0.97 | 2658.38 | 474.80 | 1063.88 | 2355.68 | 2700.25 | 2989.48 | 4450.19 | ▁▃▇▂▁ |
LMT_SCR_RT_CORRECT | 343 | 0.97 | 2661.99 | 470.65 | 1091.88 | 2357.26 | 2697.14 | 2982.15 | 4695.50 | ▁▅▇▂▁ |
LMT_SCR_RT_WRONG | 653 | 0.95 | 2688.16 | 625.58 | 824.00 | 2233.53 | 2681.00 | 3100.91 | 4990.00 | ▁▆▇▂▁ |
LMT_SCR_CORRECT_RT_STIMTYPE1 | 1270 | 0.89 | 2727.44 | 739.10 | 789.00 | 2200.00 | 2671.00 | 3192.00 | 17963.00 | ▇▁▁▁▁ |
LMT_SCR_CORRECT_RT_STIMTYPE2 | 1235 | 0.90 | 2796.90 | 768.13 | 550.00 | 2243.50 | 2765.00 | 3309.00 | 5001.00 | ▁▅▇▅▁ |
LMT_SCR_CORRECT_RT_STIMTYPE3 | 3050 | 0.74 | 2874.75 | 661.98 | 526.00 | 2444.00 | 2845.00 | 3287.00 | 5006.00 | ▁▂▇▃▁ |
LMT_SCR_CORRECT_RT_STIMTYPE4 | 2900 | 0.76 | 2722.26 | 679.02 | 591.00 | 2248.00 | 2674.00 | 3147.00 | 6100.00 | ▁▇▆▁▁ |
LMT_SCR_CORRECT_RT_STIMTYPE5 | 3674 | 0.69 | 3050.74 | 760.48 | 347.00 | 2534.00 | 3052.50 | 3572.00 | 4999.00 | ▁▂▇▇▂ |
LMT_SCR_CORRECT_RT_STIMTYPE6 | 3590 | 0.70 | 2957.41 | 779.92 | 313.00 | 2429.00 | 2951.00 | 3480.25 | 5006.00 | ▁▃▇▆▂ |
LMT_SCR_CORRECT_RT_STIMTYPE7 | 717 | 0.94 | 2353.55 | 581.18 | 798.00 | 1944.00 | 2270.00 | 2672.00 | 4982.00 | ▁▇▅▁▁ |
LMT_SCR_CORRECT_RT_STIMTYPE8 | 733 | 0.94 | 2576.56 | 633.26 | 649.00 | 2138.00 | 2513.00 | 2962.00 | 5000.00 | ▁▇▇▂▁ |
LMT_SCR_CORRECT_NUM_STIMTYPE1 | 338 | 0.97 | 2.46 | 1.27 | 0.00 | 1.00 | 3.00 | 4.00 | 4.00 | ▂▅▆▇▇ |
LMT_SCR_CORRECT_NUM_STIMTYPE2 | 338 | 0.97 | 2.46 | 1.27 | 0.00 | 1.00 | 3.00 | 4.00 | 4.00 | ▂▅▆▇▇ |
LMT_SCR_CORRECT_NUM_STIMTYPE3 | 338 | 0.97 | 2.17 | 1.51 | 0.00 | 1.00 | 2.00 | 4.00 | 4.00 | ▇▃▅▇▇ |
LMT_SCR_CORRECT_NUM_STIMTYPE4 | 338 | 0.97 | 2.24 | 1.51 | 0.00 | 1.00 | 3.00 | 4.00 | 4.00 | ▆▃▅▇▇ |
LMT_SCR_CORRECT_NUM_STIMTYPE5 | 338 | 0.97 | 1.59 | 1.33 | 0.00 | 0.00 | 2.00 | 3.00 | 4.00 | ▇▆▆▅▃ |
LMT_SCR_CORRECT_NUM_STIMTYPE6 | 338 | 0.97 | 1.56 | 1.30 | 0.00 | 0.00 | 1.00 | 3.00 | 4.00 | ▇▆▆▅▂ |
LMT_SCR_CORRECT_NUM_STIMTYPE7 | 338 | 0.97 | 3.23 | 1.09 | 0.00 | 3.00 | 4.00 | 4.00 | 4.00 | ▁▁▂▃▇ |
LMT_SCR_CORRECT_NUM_STIMTYPE8 | 338 | 0.97 | 3.13 | 1.11 | 0.00 | 3.00 | 4.00 | 4.00 | 4.00 | ▁▁▂▃▇ |
LMT_SCR_WRONG_RT_STIMTYPE1 | 5529 | 0.53 | 2766.92 | 843.40 | 43.00 | 2149.00 | 2678.00 | 3311.00 | 5003.00 | ▁▃▇▅▂ |
LMT_SCR_WRONG_RT_STIMTYPE2 | 5260 | 0.56 | 2974.29 | 824.25 | 108.00 | 2384.25 | 2924.00 | 3540.00 | 5006.00 | ▁▂▇▆▂ |
LMT_SCR_WRONG_RT_STIMTYPE3 | 4761 | 0.60 | 2445.67 | 799.05 | 510.00 | 1851.00 | 2317.00 | 2892.00 | 5000.00 | ▁▇▆▂▁ |
LMT_SCR_WRONG_RT_STIMTYPE4 | 4799 | 0.60 | 2431.67 | 789.55 | 314.00 | 1844.00 | 2301.00 | 2896.50 | 5002.00 | ▁▇▇▃▁ |
LMT_SCR_WRONG_RT_STIMTYPE5 | 2787 | 0.77 | 2699.10 | 843.32 | 523.00 | 2048.00 | 2616.00 | 3272.50 | 5003.00 | ▁▇▇▅▂ |
LMT_SCR_WRONG_RT_STIMTYPE6 | 2671 | 0.78 | 2626.09 | 794.87 | 681.00 | 2019.00 | 2524.00 | 3132.00 | 5003.00 | ▁▇▇▃▁ |
LMT_SCR_WRONG_RT_STIMTYPE7 | 8283 | 0.30 | 2548.21 | 830.29 | 82.00 | 1966.00 | 2470.00 | 3056.50 | 5003.00 | ▁▅▇▃▁ |
LMT_SCR_WRONG_RT_STIMTYPE8 | 7965 | 0.33 | 2727.80 | 865.44 | 175.00 | 2107.00 | 2675.00 | 3306.00 | 5005.00 | ▁▅▇▅▂ |
LMT_SCR_WRONG_NUM_STIMTYPE1 | 338 | 0.97 | 0.97 | 1.08 | 0.00 | 0.00 | 1.00 | 2.00 | 4.00 | ▇▅▃▂▁ |
LMT_SCR_WRONG_NUM_STIMTYPE2 | 338 | 0.97 | 1.05 | 1.13 | 0.00 | 0.00 | 1.00 | 2.00 | 4.00 | ▇▅▃▂▁ |
LMT_SCR_WRONG_NUM_STIMTYPE3 | 338 | 0.97 | 1.46 | 1.50 | 0.00 | 0.00 | 1.00 | 3.00 | 4.00 | ▇▅▂▂▃ |
LMT_SCR_WRONG_NUM_STIMTYPE4 | 338 | 0.97 | 1.45 | 1.50 | 0.00 | 0.00 | 1.00 | 3.00 | 4.00 | ▇▅▂▂▃ |
LMT_SCR_WRONG_NUM_STIMTYPE5 | 338 | 0.97 | 1.89 | 1.40 | 0.00 | 1.00 | 2.00 | 3.00 | 4.00 | ▇▇▇▆▆ |
LMT_SCR_WRONG_NUM_STIMTYPE6 | 338 | 0.97 | 1.89 | 1.37 | 0.00 | 1.00 | 2.00 | 3.00 | 4.00 | ▇▇▇▆▆ |
LMT_SCR_WRONG_NUM_STIMTYPE7 | 338 | 0.97 | 0.54 | 0.95 | 0.00 | 0.00 | 0.00 | 1.00 | 4.00 | ▇▂▁▁▁ |
LMT_SCR_WRONG_NUM_STIMTYPE8 | 338 | 0.97 | 0.56 | 0.93 | 0.00 | 0.00 | 0.00 | 1.00 | 4.00 | ▇▂▁▁▁ |
LMT_SCR_TOUT_NUM_STIMTYPE1 | 338 | 0.97 | 0.56 | 0.73 | 0.00 | 0.00 | 0.00 | 1.00 | 4.00 | ▇▅▁▁▁ |
LMT_SCR_TOUT_NUM_STIMTYPE2 | 338 | 0.97 | 0.49 | 0.72 | 0.00 | 0.00 | 0.00 | 1.00 | 4.00 | ▇▃▁▁▁ |
LMT_SCR_TOUT_NUM_STIMTYPE3 | 338 | 0.97 | 0.37 | 0.63 | 0.00 | 0.00 | 0.00 | 1.00 | 4.00 | ▇▃▁▁▁ |
LMT_SCR_TOUT_NUM_STIMTYPE4 | 338 | 0.97 | 0.31 | 0.58 | 0.00 | 0.00 | 0.00 | 1.00 | 4.00 | ▇▂▁▁▁ |
LMT_SCR_TOUT_NUM_STIMTYPE5 | 338 | 0.97 | 0.52 | 0.74 | 0.00 | 0.00 | 0.00 | 1.00 | 4.00 | ▇▃▁▁▁ |
LMT_SCR_TOUT_NUM_STIMTYPE6 | 338 | 0.97 | 0.54 | 0.73 | 0.00 | 0.00 | 0.00 | 1.00 | 4.00 | ▇▅▁▁▁ |
LMT_SCR_TOUT_NUM_STIMTYPE7 | 338 | 0.97 | 0.23 | 0.50 | 0.00 | 0.00 | 0.00 | 0.00 | 4.00 | ▇▂▁▁▁ |
LMT_SCR_TOUT_NUM_STIMTYPE8 | 338 | 0.97 | 0.31 | 0.58 | 0.00 | 0.00 | 0.00 | 1.00 | 4.00 | ▇▂▁▁▁ |
Pearson %>%
filter(EVENTNAME =="baseline_year_1_arm_1") %>%
select(-1:-11) %>%
skimr::skim()
Name | Piped data |
Number of rows | 11878 |
Number of columns | 61 |
_______________________ | |
Column type frequency: | |
character | 1 |
numeric | 60 |
________________________ | |
Group variables | None |
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
STUDY_COHORT_NAME | 0 | 1 | 21 | 21 | 0 | 1 | 0 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
PEA_RAVLT_SD_TRIAL_I_TC | 234 | 0.98 | 5.05 | 1.79 | 0 | 4 | 5 | 6 | 14 | ▁▇▅▁▁ |
PEA_RAVLT_SD_TRIAL_I_TR | 143 | 0.99 | 0.36 | 0.91 | 0 | 0 | 0 | 0 | 15 | ▇▁▁▁▁ |
PEA_RAVLT_SD_TRIAL_I_TI | 143 | 0.99 | 0.57 | 1.02 | 0 | 0 | 0 | 1 | 22 | ▇▁▁▁▁ |
PEA_RAVLT_SD_TRIAL_II_TC | 199 | 0.98 | 7.85 | 2.27 | 0 | 6 | 8 | 9 | 15 | ▁▅▇▃▁ |
PEA_RAVLT_SD_TRIAL_II_TR | 145 | 0.99 | 0.69 | 1.32 | 0 | 0 | 0 | 1 | 31 | ▇▁▁▁▁ |
PEA_RAVLT_SD_TRIAL_II_TI | 145 | 0.99 | 0.31 | 0.77 | 0 | 0 | 0 | 0 | 28 | ▇▁▁▁▁ |
PEA_RAVLT_SD_TRIAL_III_TC | 193 | 0.98 | 9.50 | 2.65 | 0 | 8 | 10 | 11 | 15 | ▁▂▇▇▂ |
PEA_RAVLT_SD_TRIAL_III_TR | 145 | 0.99 | 1.16 | 1.90 | 0 | 0 | 1 | 2 | 32 | ▇▁▁▁▁ |
PEA_RAVLT_SD_TRIAL_III_TI | 145 | 0.99 | 0.26 | 0.68 | 0 | 0 | 0 | 0 | 14 | ▇▁▁▁▁ |
PEA_RAVLT_SD_TRIAL_IV_TC | 192 | 0.98 | 10.54 | 2.68 | 0 | 9 | 11 | 13 | 15 | ▁▁▅▇▅ |
PEA_RAVLT_SD_TRIAL_IV_TR | 147 | 0.99 | 1.41 | 2.26 | 0 | 0 | 1 | 2 | 41 | ▇▁▁▁▁ |
PEA_RAVLT_SD_TRIAL_IV_TI | 147 | 0.99 | 0.24 | 0.63 | 0 | 0 | 0 | 0 | 9 | ▇▁▁▁▁ |
PEA_RAVLT_SD_TRIAL_V_TC | 188 | 0.98 | 11.20 | 2.62 | 0 | 10 | 12 | 13 | 15 | ▁▁▃▇▇ |
PEA_RAVLT_SD_TRIAL_V_TR | 147 | 0.99 | 1.55 | 2.63 | 0 | 0 | 1 | 2 | 96 | ▇▁▁▁▁ |
PEA_RAVLT_SD_TRIAL_V_TI | 147 | 0.99 | 0.23 | 0.66 | 0 | 0 | 0 | 0 | 21 | ▇▁▁▁▁ |
PEA_RAVLT_SD_LISTB_TC | 210 | 0.98 | 4.85 | 1.69 | 0 | 4 | 5 | 6 | 13 | ▁▇▃▁▁ |
PEA_RAVLT_SD_LISTB_TR | 147 | 0.99 | 0.24 | 0.68 | 0 | 0 | 0 | 0 | 13 | ▇▁▁▁▁ |
PEA_RAVLT_SD_LISTB_TI | 147 | 0.99 | 0.46 | 1.02 | 0 | 0 | 0 | 1 | 16 | ▇▁▁▁▁ |
PEA_RAVLT_SD_TRIAL_VI_TC | 210 | 0.98 | 9.66 | 3.05 | 0 | 8 | 10 | 12 | 15 | ▁▂▆▇▃ |
PEA_RAVLT_SD_TRIAL_VI_TR | 147 | 0.99 | 1.01 | 1.89 | 0 | 0 | 0 | 1 | 35 | ▇▁▁▁▁ |
PEA_RAVLT_SD_TRIAL_VI_TI | 147 | 0.99 | 0.40 | 0.92 | 0 | 0 | 0 | 1 | 27 | ▇▁▁▁▁ |
PEA_RAVLT_LD_TRIAL_VII_TC | 264 | 0.98 | 9.18 | 3.20 | 0 | 7 | 9 | 12 | 15 | ▁▃▇▇▃ |
PEA_RAVLT_LD_TRIAL_VII_TR | 171 | 0.99 | 0.83 | 1.79 | 0 | 0 | 0 | 1 | 45 | ▇▁▁▁▁ |
PEA_RAVLT_LD_TRIAL_VII_TI | 171 | 0.99 | 0.49 | 0.97 | 0 | 0 | 0 | 1 | 17 | ▇▁▁▁▁ |
PEA_WISCV_TRS | 243 | 0.98 | 17.91 | 3.84 | 0 | 15 | 18 | 20 | 32 | ▁▁▇▅▁ |
PEA_WISCV_TSS | 249 | 0.98 | 9.86 | 2.99 | 1 | 8 | 10 | 12 | 19 | ▁▆▇▅▁ |
PEA_WISCV_ITEM_A_RS | 219 | 0.98 | 0.98 | 0.12 | 0 | 1 | 1 | 1 | 1 | ▁▁▁▁▇ |
PEA_WISCV_ITEM_B_RS | 209 | 0.98 | 0.98 | 0.14 | 0 | 1 | 1 | 1 | 1 | ▁▁▁▁▇ |
PEA_WISCV_ITEM_1_RS | 11625 | 0.02 | 0.92 | 0.26 | 0 | 1 | 1 | 1 | 1 | ▁▁▁▁▇ |
PEA_WISCV_ITEM_2_RS | 11585 | 0.02 | 0.95 | 0.21 | 0 | 1 | 1 | 1 | 1 | ▁▁▁▁▇ |
PEA_WISCV_ITEM_3_RS | 11380 | 0.04 | 0.90 | 0.30 | 0 | 1 | 1 | 1 | 1 | ▁▁▁▁▇ |
PEA_WISCV_ITEM_4_RS | 10670 | 0.10 | 0.94 | 0.24 | 0 | 1 | 1 | 1 | 1 | ▁▁▁▁▇ |
PEA_WISCV_ITEM_5_RS | 203 | 0.98 | 0.98 | 0.15 | 0 | 1 | 1 | 1 | 1 | ▁▁▁▁▇ |
PEA_WISCV_ITEM_6_RS | 219 | 0.98 | 0.93 | 0.25 | 0 | 1 | 1 | 1 | 1 | ▁▁▁▁▇ |
PEA_WISCV_ITEM_7_RS | 221 | 0.98 | 0.96 | 0.19 | 0 | 1 | 1 | 1 | 1 | ▁▁▁▁▇ |
PEA_WISCV_ITEM_8_RS | 226 | 0.98 | 0.97 | 0.16 | 0 | 1 | 1 | 1 | 1 | ▁▁▁▁▇ |
PEA_WISCV_ITEM_9_RS | 234 | 0.98 | 0.95 | 0.22 | 0 | 1 | 1 | 1 | 1 | ▁▁▁▁▇ |
PEA_WISCV_ITEM_10_RS | 250 | 0.98 | 0.97 | 0.17 | 0 | 1 | 1 | 1 | 1 | ▁▁▁▁▇ |
PEA_WISCV_ITEM_11_RS | 267 | 0.98 | 0.94 | 0.23 | 0 | 1 | 1 | 1 | 1 | ▁▁▁▁▇ |
PEA_WISCV_ITEM_12_RS | 306 | 0.97 | 0.93 | 0.25 | 0 | 1 | 1 | 1 | 1 | ▁▁▁▁▇ |
PEA_WISCV_ITEM_13_RS | 323 | 0.97 | 0.92 | 0.28 | 0 | 1 | 1 | 1 | 1 | ▁▁▁▁▇ |
PEA_WISCV_ITEM_14_RS | 367 | 0.97 | 0.80 | 0.40 | 0 | 1 | 1 | 1 | 1 | ▂▁▁▁▇ |
PEA_WISCV_ITEM_15_RS | 470 | 0.96 | 0.74 | 0.44 | 0 | 0 | 1 | 1 | 1 | ▃▁▁▁▇ |
PEA_WISCV_ITEM_16_RS | 758 | 0.94 | 0.70 | 0.46 | 0 | 0 | 1 | 1 | 1 | ▃▁▁▁▇ |
PEA_WISCV_ITEM_17_RS | 1186 | 0.90 | 0.58 | 0.49 | 0 | 0 | 1 | 1 | 1 | ▆▁▁▁▇ |
PEA_WISCV_ITEM_18_RS | 1626 | 0.86 | 0.56 | 0.50 | 0 | 0 | 1 | 1 | 1 | ▆▁▁▁▇ |
PEA_WISCV_ITEM_19_RS | 2147 | 0.82 | 0.56 | 0.50 | 0 | 0 | 1 | 1 | 1 | ▆▁▁▁▇ |
PEA_WISCV_ITEM_20_RS | 2833 | 0.76 | 0.53 | 0.50 | 0 | 0 | 1 | 1 | 1 | ▇▁▁▁▇ |
PEA_WISCV_ITEM_21_RS | 3462 | 0.71 | 0.47 | 0.50 | 0 | 0 | 0 | 1 | 1 | ▇▁▁▁▇ |
PEA_WISCV_ITEM_22_RS | 4189 | 0.65 | 0.32 | 0.46 | 0 | 0 | 0 | 1 | 1 | ▇▁▁▁▃ |
PEA_WISCV_ITEM_23_RS | 5086 | 0.57 | 0.43 | 0.50 | 0 | 0 | 0 | 1 | 1 | ▇▁▁▁▆ |
PEA_WISCV_ITEM_24_RS | 6025 | 0.49 | 0.31 | 0.46 | 0 | 0 | 0 | 1 | 1 | ▇▁▁▁▃ |
PEA_WISCV_ITEM_25_RS | 7052 | 0.41 | 0.22 | 0.41 | 0 | 0 | 0 | 0 | 1 | ▇▁▁▁▂ |
PEA_WISCV_ITEM_26_RS | 7813 | 0.34 | 0.30 | 0.46 | 0 | 0 | 0 | 1 | 1 | ▇▁▁▁▃ |
PEA_WISCV_ITEM_27_RS | 8983 | 0.24 | 0.31 | 0.46 | 0 | 0 | 0 | 1 | 1 | ▇▁▁▁▃ |
PEA_WISCV_ITEM_28_RS | 9694 | 0.18 | 0.22 | 0.41 | 0 | 0 | 0 | 0 | 1 | ▇▁▁▁▂ |
PEA_WISCV_ITEM_29_RS | 10058 | 0.15 | 0.28 | 0.45 | 0 | 0 | 0 | 1 | 1 | ▇▁▁▁▃ |
PEA_WISCV_ITEM_30_RS | 10532 | 0.11 | 0.10 | 0.30 | 0 | 0 | 0 | 0 | 1 | ▇▁▁▁▁ |
PEA_WISCV_ITEM_31_RS | 10969 | 0.08 | 0.15 | 0.36 | 0 | 0 | 0 | 0 | 1 | ▇▁▁▁▂ |
PEA_WISCV_ITEM_32_RS | 11206 | 0.06 | 0.06 | 0.24 | 0 | 0 | 0 | 0 | 1 | ▇▁▁▁▁ |
sumCog <- plyr::join_all(list(NIH_TB, CashChoice, LittleMan, Pearson, vision_idx),
by=c('SUBJECTKEY','EVENTNAME'), type='full') %>%
select(SUBJECTKEY,EVENTNAME,
NIHTBX_FLANKER_UNCORRECTED, NIHTBX_CARDSORT_UNCORRECTED, NIHTBX_PATTERN_UNCORRECTED,
NIHTBX_PICVOCAB_UNCORRECTED, NIHTBX_READING_UNCORRECTED, NIHTBX_PICTURE_UNCORRECTED,
PEA_RAVLT_LD_TRIAL_VII_TC, NIHTBX_LIST_UNCORRECTED, LMT_SCR_PERC_CORRECT, PEA_WISCV_TRS,
NIHTBX_FLUIDCOMP_UNCORRECTED, NIHTBX_CRYST_UNCORRECTED, NIHTBX_TOTALCOMP_UNCORRECTED, visionProb)
sumCog %>%
filter(EVENTNAME =="baseline_year_1_arm_1") %>%
select(-1:-2) %>%
skimr::skim()
Name | Piped data |
Number of rows | 11878 |
Number of columns | 14 |
_______________________ | |
Column type frequency: | |
numeric | 14 |
________________________ | |
Group variables | None |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
NIHTBX_FLANKER_UNCORRECTED | 155 | 0.99 | 94.00 | 9.14 | 51 | 89.00 | 95.00 | 100.00 | 116 | ▁▁▃▇▂ |
NIHTBX_CARDSORT_UNCORRECTED | 154 | 0.99 | 92.52 | 9.51 | 50 | 88.00 | 93.00 | 99.00 | 120 | ▁▁▆▇▁ |
NIHTBX_PATTERN_UNCORRECTED | 173 | 0.99 | 88.06 | 14.58 | 30 | 80.00 | 88.00 | 99.00 | 140 | ▁▃▇▅▁ |
NIHTBX_PICVOCAB_UNCORRECTED | 149 | 0.99 | 84.46 | 8.12 | 29 | 79.00 | 84.00 | 90.00 | 119 | ▁▁▇▇▁ |
NIHTBX_READING_UNCORRECTED | 163 | 0.99 | 90.86 | 6.91 | 59 | 87.00 | 91.00 | 95.00 | 119 | ▁▁▇▂▁ |
NIHTBX_PICTURE_UNCORRECTED | 161 | 0.99 | 102.81 | 12.07 | 76 | 94.00 | 102.00 | 111.00 | 136 | ▃▇▇▅▁ |
PEA_RAVLT_LD_TRIAL_VII_TC | 264 | 0.98 | 9.18 | 3.20 | 0 | 7.00 | 9.00 | 12.00 | 15 | ▁▃▇▇▃ |
NIHTBX_LIST_UNCORRECTED | 198 | 0.98 | 96.65 | 12.09 | 36 | 90.00 | 97.00 | 105.00 | 136 | ▁▁▅▇▁ |
LMT_SCR_PERC_CORRECT | 337 | 0.97 | 0.59 | 0.17 | 0 | 0.47 | 0.56 | 0.72 | 1 | ▁▂▇▅▂ |
PEA_WISCV_TRS | 243 | 0.98 | 17.91 | 3.84 | 0 | 15.00 | 18.00 | 20.00 | 32 | ▁▁▇▅▁ |
NIHTBX_FLUIDCOMP_UNCORRECTED | 237 | 0.98 | 91.55 | 10.66 | 44 | 85.00 | 92.00 | 99.00 | 131 | ▁▂▇▅▁ |
NIHTBX_CRYST_UNCORRECTED | 181 | 0.98 | 86.36 | 7.07 | 51 | 82.00 | 86.00 | 91.00 | 115 | ▁▁▇▃▁ |
NIHTBX_TOTALCOMP_UNCORRECTED | 241 | 0.98 | 86.22 | 9.14 | 44 | 81.00 | 87.00 | 92.00 | 117 | ▁▂▇▇▁ |
visionProb | 11085 | 0.07 | 0.04 | 0.19 | 0 | 0.00 | 0.00 | 0.00 | 1 | ▇▁▁▁▁ |
sumCog %>%
filter(EVENTNAME =="2_year_follow_up_y_arm_1") %>%
select(-1:-2) %>%
skimr::skim()
Name | Piped data |
Number of rows | 6571 |
Number of columns | 14 |
_______________________ | |
Column type frequency: | |
numeric | 14 |
________________________ | |
Group variables | None |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
NIHTBX_FLANKER_UNCORRECTED | 166 | 0.97 | 100.26 | 7.49 | 54.00 | 96.00 | 101.00 | 105.00 | 117 | ▁▁▂▇▅ |
NIHTBX_CARDSORT_UNCORRECTED | 6550 | 0.00 | 94.71 | 8.53 | 76.00 | 90.00 | 93.00 | 100.00 | 109 | ▁▃▇▅▃ |
NIHTBX_PATTERN_UNCORRECTED | 200 | 0.97 | 103.53 | 15.12 | 35.00 | 94.00 | 103.00 | 113.00 | 153 | ▁▂▇▇▁ |
NIHTBX_PICVOCAB_UNCORRECTED | 280 | 0.96 | 89.18 | 8.33 | 60.00 | 84.00 | 89.00 | 95.00 | 123 | ▁▅▇▂▁ |
NIHTBX_READING_UNCORRECTED | 293 | 0.96 | 94.87 | 6.59 | 67.00 | 91.00 | 95.00 | 98.00 | 180 | ▂▇▁▁▁ |
NIHTBX_PICTURE_UNCORRECTED | 183 | 0.97 | 109.48 | 11.98 | 76.00 | 101.00 | 109.00 | 118.00 | 133 | ▁▃▇▇▃ |
PEA_RAVLT_LD_TRIAL_VII_TC | 213 | 0.97 | 9.28 | 2.86 | 0.00 | 7.00 | 9.00 | 11.00 | 15 | ▁▃▇▇▃ |
NIHTBX_LIST_UNCORRECTED | 6544 | 0.00 | 96.00 | 17.87 | 36.00 | 90.00 | 97.00 | 105.00 | 128 | ▁▁▃▇▂ |
LMT_SCR_PERC_CORRECT | 77 | 0.99 | 0.74 | 0.18 | 0.03 | 0.59 | 0.75 | 0.91 | 1 | ▁▁▅▅▇ |
PEA_WISCV_TRS | 6571 | 0.00 | NaN | NA | NA | NA | NA | NA | NA | |
NIHTBX_FLUIDCOMP_UNCORRECTED | 6547 | 0.00 | 94.58 | 13.66 | 75.00 | 84.75 | 91.50 | 99.00 | 127 | ▇▇▃▃▂ |
NIHTBX_CRYST_UNCORRECTED | 192 | 0.97 | 91.03 | 7.09 | 66.00 | 86.00 | 91.00 | 95.00 | 125 | ▁▆▇▁▁ |
NIHTBX_TOTALCOMP_UNCORRECTED | 6547 | 0.00 | 89.08 | 10.28 | 77.00 | 82.00 | 86.50 | 91.50 | 114 | ▇▅▂▂▂ |
visionProb | 6176 | 0.06 | 0.06 | 0.23 | 0.00 | 0.00 | 0.00 | 0.00 | 1 | ▇▁▁▁▁ |
CBCL definitions from Michelini et al. Translational Psychiatry (2019)
CBCL <-read_csv(paste0(dataFold,"ABCD_CBCL01_DATA_TABLE.csv"))
LowFreqComp <- read_csv(paste0(utilFold,"CBCLLowFreqCompositMichelini.csv")) %>%
mutate(CBCL_COL = as.factor(CBCL_COL))
LowFreq <- levels(droplevels(subset(LowFreqComp,LowFreq == 1, select = CBCL_COL)$CBCL_COL[]))
Com1_Attack <- levels(droplevels(subset(LowFreqComp,Com1_Attack== 1, select = CBCL_COL)$CBCL_COL[]))
Com2_Destroy <- levels(droplevels(subset(LowFreqComp,Com2_Destroy== 1, select = CBCL_COL)$CBCL_COL[]))
Com3_Disobeys <- levels(droplevels(subset(LowFreqComp,Com3_Disobeys== 1, select = CBCL_COL)$CBCL_COL[]))
Com4_Steals <- levels(droplevels(subset(LowFreqComp,Com4_Steals== 1, select = CBCL_COL)$CBCL_COL[]))
Com5_Peer <- levels(droplevels(subset(LowFreqComp,Com5_Peer== 1, select = CBCL_COL)$CBCL_COL[]))
Com6_Distracted <- levels(droplevels(subset(LowFreqComp,Com6_Distracted== 1, select = CBCL_COL)$CBCL_COL[]))
Com7_Hallucinations <- levels(droplevels(subset(LowFreqComp,Com7_Hallucinations== 1, select = CBCL_COL)$CBCL_COL[]))
Com8_SexPlay <- levels(droplevels(subset(LowFreqComp,Com8_SexPlay== 1, select = CBCL_COL)$CBCL_COL[]))
Com9_Weight <- levels(droplevels(subset(LowFreqComp,Com9_Weight== 1, select = CBCL_COL)$CBCL_COL[]))
# add .01 so that rounding .5 becomes 1 as opposed to 0
CBCLLowFreqDroppedCompAdded <-
CBCL %>%
select(-one_of(LowFreq)) %>%
mutate(Com1_Attack = round(rowMeans(select(.,one_of(Com1_Attack)))+.01)) %>%
mutate(Com2_Destroy = round(rowMeans(select(.,one_of(Com2_Destroy)))+.01)) %>%
mutate(Com3_Disobeys = round(rowMeans(select(.,one_of(Com3_Disobeys)))+.01)) %>%
mutate(Com4_Steals = round(rowMeans(select(.,one_of(Com4_Steals)))+.01)) %>%
mutate(Com5_Peer = round(rowMeans(select(.,one_of(Com5_Peer)))+.01)) %>%
mutate(Com6_Distracted = round(rowMeans(select(.,one_of(Com6_Distracted )))+.01)) %>%
mutate(Com7_Hallucinations = round(rowMeans(select(.,one_of(Com7_Hallucinations)))+.01)) %>%
mutate(Com8_SexPlay = round(rowMeans(select(.,one_of(Com8_SexPlay)))+.01)) %>%
mutate(Com9_Weight = round(rowMeans(select(.,one_of(Com9_Weight )))+.01))
comNames <-
c(Com1_Attack, Com2_Destroy, Com3_Disobeys, Com4_Steals, Com5_Peer, Com6_Distracted, Com7_Hallucinations, Com8_SexPlay, Com9_Weight)
CBCLLowFreqCompDroppedCompAdded <-
CBCLLowFreqDroppedCompAdded %>% select(-one_of(comNames))
CBCLLowFreqCompDroppedCompAddedNoNa <- CBCLLowFreqCompDroppedCompAdded %>% select(-TIMEPT) %>% drop_na()
CBCLNamesAll <- CBCLLowFreqCompDroppedCompAddedNoNa %>%
select(matches('CBCL_Q|Com')) %>% colnames()
CBCLLowFreqCompDroppedCompAddedNoNaDef <-
plyr::join_all(list(data.frame(CBCL_COL = CBCLNamesAll), LowFreqComp), by='CBCL_COL', type='left')
prevFac <-as_tibble(read.csv(paste0(utilFold,"CBCLLowFreqCompDroppedCompAddedNoNaDefMicheliniFac.csv"))) %>% mutate(CBCL_COL = as.factor(CBCL_COL))
dropFCol <- levels(droplevels(subset(prevFac,prevFactor == "drop", select = CBCL_COL)$CBCL_COL[]))
F1Externalizing <- levels(droplevels(subset(prevFac,prevFactor == "F1", select = CBCL_COL)$CBCL_COL[]))
F2Internalizing <- levels(droplevels(subset(prevFac,prevFactor == "F2", select = CBCL_COL)$CBCL_COL[]))
F3NeuroDevelopmental <- levels(droplevels(subset(prevFac,prevFactor == "F3", select = CBCL_COL)$CBCL_COL[]))
F4Somatoform <- levels(droplevels(subset(prevFac,prevFactor == "F4", select = CBCL_COL)$CBCL_COL[]))
F5Detachment <- levels(droplevels(subset(prevFac,prevFactor == "F5", select = CBCL_COL)$CBCL_COL[]))
CBCLMicheliniPruned <-
CBCLLowFreqCompDroppedCompAddedNoNa %>% select(-one_of(dropFCol)) %>% filter(EVENTNAME =="baseline_year_1_arm_1")
CBCLNames <- CBCLMicheliniPruned %>%
select(matches('CBCL_Q|Com')) %>% colnames()
CBCLMicheliniPruned.NewNames <-
CBCLLowFreqCompDroppedCompAddedNoNa %>% select(-one_of(dropFCol)) %>%
filter(EVENTNAME =="baseline_year_1_arm_1") %>%
rename_at(vars(all_of(F1Externalizing)), ~ paste0("Ext",1:length(F1Externalizing))) %>%
rename_at(vars(all_of(F2Internalizing)), ~ paste0("Int",1:length(F2Internalizing))) %>%
rename_at(vars(all_of(F3NeuroDevelopmental)), ~ paste0("NDe",1:length(F3NeuroDevelopmental))) %>%
rename_at(vars(all_of(F4Somatoform)), ~ paste0("Som",1:length(F4Somatoform))) %>%
rename_at(vars(all_of(F5Detachment)), ~ paste0("Det",1:length(F5Detachment)))
CBCLfaDat.NewNames <- CBCLMicheliniPruned.NewNames %>%
select(matches('Ext|Int|NDe|Som|Det')) %>%
select(-matches('INTERVIEW'))
Social, thought, attention, int and ext?
CBCLPrecomputed <-read_csv(paste0(dataFold,"ABCD_CBCLS01_DATA_TABLE.csv"))
## Warning: One or more parsing issues, see `problems()` for details
#glimpse(CBCLPrecomputed)
CBCLPrecomputedSelected <- CBCLPrecomputed %>% select(SUBJECTKEY,EVENTNAME,
CBCLPrecomputed %>% select(ends_with("_R")) %>% colnames())
CBCLPrecomputedSelected %>%
skimr::skim()
Name | Piped data |
Number of rows | 29684 |
Number of columns | 22 |
_______________________ | |
Column type frequency: | |
character | 2 |
numeric | 20 |
________________________ | |
Group variables | None |
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
SUBJECTKEY | 0 | 1 | 12 | 16 | 0 | 11878 | 0 |
EVENTNAME | 0 | 1 | 21 | 24 | 0 | 3 | 0 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
CBCL_SCR_SYN_ANXDEP_R | 71 | 1 | 2.48 | 3.05 | 0 | 0 | 1 | 4 | 26 | ▇▁▁▁▁ |
CBCL_SCR_SYN_WITHDEP_R | 71 | 1 | 1.10 | 1.78 | 0 | 0 | 0 | 2 | 16 | ▇▁▁▁▁ |
CBCL_SCR_SYN_SOMATIC_R | 71 | 1 | 1.46 | 1.94 | 0 | 0 | 1 | 2 | 18 | ▇▁▁▁▁ |
CBCL_SCR_SYN_SOCIAL_R | 71 | 1 | 1.51 | 2.20 | 0 | 0 | 1 | 2 | 19 | ▇▁▁▁▁ |
CBCL_SCR_SYN_THOUGHT_R | 71 | 1 | 1.58 | 2.18 | 0 | 0 | 1 | 2 | 22 | ▇▁▁▁▁ |
CBCL_SCR_SYN_ATTENTION_R | 71 | 1 | 2.87 | 3.43 | 0 | 0 | 2 | 5 | 20 | ▇▂▁▁▁ |
CBCL_SCR_SYN_RULEBREAK_R | 71 | 1 | 1.13 | 1.84 | 0 | 0 | 0 | 2 | 23 | ▇▁▁▁▁ |
CBCL_SCR_SYN_AGGRESSIVE_R | 71 | 1 | 3.10 | 4.21 | 0 | 0 | 2 | 4 | 36 | ▇▁▁▁▁ |
CBCL_SCR_SYN_INTERNAL_R | 71 | 1 | 5.05 | 5.56 | 0 | 1 | 3 | 7 | 51 | ▇▁▁▁▁ |
CBCL_SCR_SYN_EXTERNAL_R | 71 | 1 | 4.23 | 5.71 | 0 | 0 | 2 | 6 | 49 | ▇▁▁▁▁ |
CBCL_SCR_SYN_TOTPROB_R | 71 | 1 | 17.55 | 17.62 | 0 | 5 | 12 | 24 | 161 | ▇▁▁▁▁ |
CBCL_SCR_DSM5_DEPRESS_R | 71 | 1 | 1.36 | 2.13 | 0 | 0 | 1 | 2 | 19 | ▇▁▁▁▁ |
CBCL_SCR_DSM5_ANXDISORD_R | 71 | 1 | 2.01 | 2.42 | 0 | 0 | 1 | 3 | 18 | ▇▂▁▁▁ |
CBCL_SCR_DSM5_SOMATICPR_R | 71 | 1 | 1.07 | 1.50 | 0 | 0 | 0 | 2 | 13 | ▇▁▁▁▁ |
CBCL_SCR_DSM5_ADHD_R | 71 | 1 | 2.49 | 2.90 | 0 | 0 | 1 | 4 | 14 | ▇▃▁▁▁ |
CBCL_SCR_DSM5_OPPOSIT_R | 71 | 1 | 1.70 | 2.00 | 0 | 0 | 1 | 3 | 10 | ▇▂▁▁▁ |
CBCL_SCR_DSM5_CONDUCT_R | 71 | 1 | 1.21 | 2.29 | 0 | 0 | 0 | 2 | 25 | ▇▁▁▁▁ |
CBCL_SCR_07_SCT_R | 71 | 1 | 0.51 | 0.99 | 0 | 0 | 0 | 1 | 8 | ▇▁▁▁▁ |
CBCL_SCR_07_OCD_R | 71 | 1 | 1.33 | 1.81 | 0 | 0 | 1 | 2 | 16 | ▇▁▁▁▁ |
CBCL_SCR_07_STRESS_R | 71 | 1 | 2.87 | 3.34 | 0 | 0 | 2 | 4 | 28 | ▇▂▁▁▁ |
Parent Adult Self Report Raw Scores Aseba
Adaptive Functioning and Strengths Scales: Education; Friends; Spouse/Partner; Family; Job; Personal Strengths
Syndrome Scales: Anxious/Depressed; Withdrawn; Somatic Complaints; Thought Problems; Attention Problems; Aggressive Behavior; Rule-breaking Behavior; and Intrusive
DSM-5-oriented Scales: Depressive Problems; Anxiety Problems; Somatic Problems; Avoidant Personality Problems; Attention Deficit/Hyperactivity Problems (Inattention and Hyperactivity/Impulsivity subscales); and Antisocial Personality Problems
Substance Use Scales: Tobacco; Alcohol; Drugs
Internalizing (INT), Attention Problems (ATT), Externalizing (EXT), and Total Problems (TOT) scales.
ASRPrecomputed <-read_csv(paste0(dataFold,"ABCD_ASRS01_DATA_TABLE.csv"))
#glimpse(ASRPrecomputed)
ASRPrecomputedSelected <- ASRPrecomputed %>% select(SUBJECTKEY,EVENTNAME,
ASRPrecomputed %>% select(ends_with("_T")) %>% colnames())
ASRPrecomputedSelected %>%
skimr::skim()
Name | Piped data |
Number of rows | 18449 |
Number of columns | 22 |
_______________________ | |
Column type frequency: | |
character | 2 |
numeric | 20 |
________________________ | |
Group variables | None |
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
SUBJECTKEY | 0 | 1 | 12 | 16 | 0 | 11878 | 0 |
EVENTNAME | 0 | 1 | 21 | 24 | 0 | 2 | 0 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
ASR_SCR_PERSTR_T | 163 | 0.99 | 47.49 | 9.44 | 20 | 42 | 49 | 55 | 60 | ▁▂▃▇▇ |
ASR_SCR_ANXDEP_T | 163 | 0.99 | 53.49 | 5.74 | 50 | 50 | 51 | 55 | 98 | ▇▁▁▁▁ |
ASR_SCR_WITHDRAWN_T | 163 | 0.99 | 52.82 | 5.03 | 50 | 50 | 51 | 53 | 100 | ▇▁▁▁▁ |
ASR_SCR_SOMATIC_T | 163 | 0.99 | 54.81 | 6.18 | 50 | 50 | 52 | 57 | 98 | ▇▂▁▁▁ |
ASR_SCR_THOUGHT_T | 163 | 0.99 | 52.82 | 4.97 | 50 | 50 | 51 | 54 | 95 | ▇▁▁▁▁ |
ASR_SCR_ATTENTION_T | 163 | 0.99 | 53.94 | 5.89 | 50 | 50 | 51 | 57 | 94 | ▇▂▁▁▁ |
ASR_SCR_AGGRESSIVE_T | 163 | 0.99 | 53.32 | 5.02 | 50 | 50 | 51 | 54 | 89 | ▇▂▁▁▁ |
ASR_SCR_RULEBREAK_T | 163 | 0.99 | 52.53 | 4.68 | 50 | 50 | 50 | 52 | 87 | ▇▁▁▁▁ |
ASR_SCR_INTRUSIVE_T | 163 | 0.99 | 51.65 | 3.40 | 50 | 50 | 50 | 51 | 76 | ▇▁▁▁▁ |
ASR_SCR_INTERNAL_T | 163 | 0.99 | 48.23 | 10.53 | 30 | 40 | 48 | 55 | 95 | ▆▇▃▁▁ |
ASR_SCR_EXTERNAL_T | 163 | 0.99 | 45.91 | 9.57 | 30 | 38 | 46 | 52 | 90 | ▇▇▃▁▁ |
ASR_SCR_TOTPROB_T | 163 | 0.99 | 43.02 | 10.21 | 25 | 36 | 43 | 50 | 89 | ▆▇▃▁▁ |
ASR_SCR_DEPRESS_T | 163 | 0.99 | 54.07 | 6.02 | 50 | 50 | 51 | 57 | 100 | ▇▁▁▁▁ |
ASR_SCR_ANXDISORD_T | 163 | 0.99 | 53.46 | 5.36 | 50 | 50 | 51 | 54 | 80 | ▇▁▁▁▁ |
ASR_SCR_SOMATICPR_T | 163 | 0.99 | 54.82 | 6.51 | 50 | 50 | 51 | 58 | 100 | ▇▂▁▁▁ |
ASR_SCR_AVOIDANT_T | 163 | 0.99 | 53.18 | 5.35 | 50 | 50 | 51 | 54 | 90 | ▇▁▁▁▁ |
ASR_SCR_ADHD_T | 163 | 0.99 | 53.24 | 5.53 | 50 | 50 | 51 | 53 | 98 | ▇▁▁▁▁ |
ASR_SCR_ANTISOCIAL_T | 163 | 0.99 | 53.03 | 4.63 | 50 | 50 | 51 | 55 | 84 | ▇▁▁▁▁ |
ASR_SCR_INATTENTION_T | 163 | 0.99 | 54.35 | 6.50 | 50 | 50 | 51 | 57 | 90 | ▇▂▁▁▁ |
ASR_SCR_HYPERACTIVE_T | 163 | 0.99 | 51.98 | 4.25 | 50 | 50 | 50 | 51 | 80 | ▇▁▁▁▁ |
only Parent General Behavior Inventory -Mania is available in the baseline
#ABCD Sum Scores Mental Health Parent
mentalHealthParent <-as_tibble(read.csv(paste0(dataFold,"ABCD_MHP02_DATA_TABLE.csv")))
mentalHealthParent %>% filter(EVENTNAME =="baseline_year_1_arm_1") %>%
select(-1:-8) %>% select(-STUDY_COHORT_NAME) %>%
skimr::skim()
Name | Piped data |
Number of rows | 11878 |
Number of columns | 76 |
_______________________ | |
Column type frequency: | |
logical | 8 |
numeric | 68 |
________________________ | |
Group variables | None |
Variable type: logical
skim_variable | n_missing | complete_rate | mean | count |
---|---|---|---|---|
PLE_P_SS_TOTAL_GOOD_NT | 11878 | 0 | NaN | : |
PLE_P_SS_TOTAL_BAD_NT | 11878 | 0 | NaN | : |
PLE_P_SS_AFFECTED_GOOD_SUM_NT | 11878 | 0 | NaN | : |
PLE_P_SS_AFFECTED_GOOD_MEAN_NT | 11878 | 0 | NaN | : |
PLE_P_SS_AFFECTED_BAD_SUM_NT | 11878 | 0 | NaN | : |
PLE_P_SS_AFFECTED_BAD_MEAN_NT | 11878 | 0 | NaN | : |
PLE_P_SS_AFFECTED_MEAN_NT | 11878 | 0 | NaN | : |
PLE_P_SS_AFFECT_SUM_NT | 11878 | 0 | NaN | : |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
PGBI_P_SS_SCORE | 8 | 1 | 1.30 | 2.77 | 0 | 0 | 0 | 1 | 28 | ▇▁▁▁▁ |
PGBI_P_SS_SCORE_NM | 0 | 1 | 0.01 | 0.22 | 0 | 0 | 0 | 0 | 10 | ▇▁▁▁▁ |
PGBI_P_SS_SCORE_NT | 0 | 1 | 10.00 | 0.00 | 10 | 10 | 10 | 10 | 10 | ▁▁▇▁▁ |
PLE_P_SS_TOTAL_NUMBER | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
PLE_P_SS_TOTAL_NUMBER_NM | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
PLE_P_SS_TOTAL_NUMBER_NT | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
PLE_P_SS_TOTAL_GOOD | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
PLE_P_SS_TOTAL_BAD | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
PLE_P_SS_AFFECTED_GOOD_SUM | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
PLE_P_SS_AFFECTED_GOOD_MEAN | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
PLE_P_SS_AFFECTED_BAD_SUM | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
PLE_P_SS_AFFECTED_BAD_MEAN | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
PLE_P_SS_AFFECTED_MEAN | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
PLE_P_SS_AFFECT_SUM | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
SSRS_P_SS_SUM | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
SSRS_P_SS_SUM_NM | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
SSRS_SS_SUM_NT | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
GISH_P_SS_M_SUM | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
GISH_P_SS_M_SUM_NM | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
GISH_P_SS_M_SUM_NT | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
GISH_P_SS_F_SUM | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
GISH_P_SS_F_SUM_NM | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
GISH_P_SS_F_SUM_NT | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
EATQ_P_SS_AGGRESSION_NM | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
EATQ_P_SS_AGGRESSION_NT | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
EATQ_P_SS_ATTENTION | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
EATQ_P_SS_ATTENTION_NM | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
EATQ_P_SS_ATTENTION_NT | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
EATQ_P_SS_DEPRESSIVE_MOOD | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
EATQ_P_SS_DEPRESSIVE_MOOD_NM | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
EATQ_P_SS_DEPRESSIVE_MOOD_NT | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
EATQ_P_SS_EFFORT_CONT_SS | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
EATQ_P_SS_EFFORT_CONT_SS_NM | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
EATQ_P_SS_EFFORT_CONT_SS_NT | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
EATQ_P_SS_FEAR | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
EATQ_P_SS_FEAR_NM | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
EATQ_P_SS_FEAR_NT | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
EATQ_P_SS_FRUSTRATION | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
EATQ_P_SS_FRUSTRATION_NM | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
EATQ_P_SS_FRUSTRATION_NT | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
EATQ_P_SS_INHIBITORY | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
EATQ_P_SS_INHIBITORY_NM | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
EATQ_P_SS_INHIBITORY_NT | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
EATQ_P_SS_ACTIVATION | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
EATQ_P_SS_NEG_AFFECT_SS | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
EATQ_P_SS_NEG_AFFECT_SS_NM | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
EATQ_P_SS_NEG_AFFECT_SS_NT | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
EATQ_P_SS_SHYNESS | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
EATQ_P_SS_SHYNESS_NM | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
EATQ_P_SS_SHYNESS_NT | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
EATQ_P_SS_SURGENCY | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
EATQ_P_SS_SURGENCY_NM | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
EATQ_P_SS_SURGENCY_NT | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
EATQ_P_SS_SURGENCY_SS | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
EATQ_P_SS_ACTIVATION_NM | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
EATQ_P_SS_SURGENCY_SS_NM | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
EATQ_P_SS_SURGENCY_SS_NT | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
GISH_P_SS_F_SUM2 | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
GISH_P_SS_F_SUM2_NM | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
GISH_P_SS_F_SUM2_NT | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
GISH_P_SS_M_SUM2 | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
GISH_P_SS_M_SUM2_NM | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
GISH_P_SS_M_SUM2_NT | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
EATQ_P_SS_ACTIVATION_NT | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
EATQ_P_SS_AFFILIATION | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
EATQ_P_SS_AFFILIATION_NM | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
EATQ_P_SS_AFFILIATION_NT | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA | |
EATQ_P_SS_AGGRESSION | 11878 | 0 | NaN | NA | NA | NA | NA | NA | NA |
ggplot(mentalHealthParent, aes(x=PGBI_P_SS_SCORE)) +
geom_histogram(color="black", fill="white") +
xlab("Parent General Behavior-Mania") +
theme_classic(base_size = 30)
## Warning: Removed 73 rows containing non-finite values (stat_bin).
mentalHealthParent %>% count(PGBI_P_SS_SCORE > 0)
## # A tibble: 3 × 2
## `PGBI_P_SS_SCORE > 0` n
## <lgl> <int>
## 1 FALSE 19013
## 2 TRUE 10598
## 3 NA 73
maniaParent <- mentalHealthParent %>%
rename(mania_parent = PGBI_P_SS_SCORE) %>%
select(SUBJECTKEY,EVENTNAME, mania_parent)
BISBAS <-as_tibble(read.csv(paste0(dataFold,"ABCD_BISBAS01_DATA_TABLE.csv"))) %>%
# filter(EVENTNAME =="baseline_year_1_arm_1") %>%
mutate(BISAvg=rowMeans(cbind(BISBAS2_Y,BISBAS3_Y,BISBAS4_Y,BISBAS6_Y), na.rm=F)) %>%
mutate(BASRRAvg=rowMeans(cbind(BISBAS8_Y,BISBAS10_Y,BISBAS11_Y,BISBAS12_Y), na.rm=F)) %>%
mutate(BASDriveAvg=rowMeans(cbind(BISBAS13_Y,BISBAS14_Y,BISBAS15_Y,BISBAS16_Y), na.rm=F)) %>%
mutate(BASFunAvg=rowMeans(cbind(BISBAS17_Y,BISBAS18_Y,BISBAS19_Y,BISBAS20_Y), na.rm=F)) %>%
mutate(BASAllAvg=rowMeans(cbind(BASRRAvg,BASDriveAvg,BASFunAvg), na.rm=F)) %>%
select(SUBJECTKEY,EVENTNAME,BISAvg,BASRRAvg,BASDriveAvg,BASFunAvg,BASAllAvg)
BISBAS %>% filter(EVENTNAME =="baseline_year_1_arm_1") %>%
ggplot(aes(x=BISAvg), bins = 100) +
geom_histogram(color="black", fill="white") +
xlab("averaged BIS") +
theme_classic(base_size = 30)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 22 rows containing non-finite values (stat_bin).
BISBAS %>% filter(EVENTNAME =="baseline_year_1_arm_1") %>%
ggplot(aes(x=BASAllAvg)) +
geom_histogram(color="black", fill="white", bins = 100) +
xlab("averaged BAS") +
theme_classic(base_size = 30)
## Warning: Removed 23 rows containing non-finite values (stat_bin).
### other mental health surveys from youth look like only ABCD Prodromal Psychosis Scale (PPS) and UPSS (beside BIS/BAS) are avaliable for the baseline.
Though 4595 data from PPS is missing. So we will not use PPS and only focus on UPPS.
#ABCD Sum Scores Mental Health Youth
mentalHealthYouth <-as_tibble(read.csv(paste0(dataFold,"ABCD_MHY02_DATA_TABLE.csv")))
mentalHealthYouth %>% filter(EVENTNAME =="baseline_year_1_arm_1") %>% select(-1:-8) %>% select(-STUDY_COHORT_NAME) %>%
skimr::skim()
Name | Piped data |
Number of rows | 11878 |
Number of columns | 97 |
_______________________ | |
Column type frequency: | |
logical | 8 |
numeric | 89 |
________________________ | |
Group variables | None |
Variable type: logical
skim_variable | n_missing | complete_rate | mean | count |
---|---|---|---|---|
PLE_Y_SS_TOTAL_GOOD_NT | 11878 | 0 | NaN | : |
PLE_Y_SS_TOTAL_BAD_NT | 11878 | 0 | NaN | : |
PLE_Y_SS_AFFECT_SUM_NT | 11878 | 0 | NaN | : |
PLE_Y_SS_AFFECTED_MEAN_NT | 11878 | 0 | NaN | : |
PLE_Y_SS_AFFECTED_GOOD_SUM_NT | 11878 | 0 | NaN | : |
PLE_Y_SS_AFFECTED_GOOD_MEAN_NT | 11878 | 0 | NaN | : |
PLE_Y_SS_AFFECTED_BAD_SUM_NT | 11878 | 0 | NaN | : |
PLE_Y_SS_AFFECTED_BAD_MEAN_NT | 11878 | 0 | NaN | : |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
PLE_Y_SS_TOTAL_NUMBER | 11878 | 0.00 | NaN | NA | NA | NA | NA | NA | NA | |
PLE_Y_SS_TOTAL_NUMBER_NM | 11878 | 0.00 | NaN | NA | NA | NA | NA | NA | NA | |
PLE_Y_SS_TOTAL_NUMBER_NT | 11878 | 0.00 | NaN | NA | NA | NA | NA | NA | NA | |
PLE_Y_SS_TOTAL_GOOD | 11878 | 0.00 | NaN | NA | NA | NA | NA | NA | NA | |
PLE_Y_SS_TOTAL_BAD | 11878 | 0.00 | NaN | NA | NA | NA | NA | NA | NA | |
PLE_Y_SS_AFFECT_SUM | 11878 | 0.00 | NaN | NA | NA | NA | NA | NA | NA | |
PLE_Y_SS_AFFECTED_GOOD_SUM | 11878 | 0.00 | NaN | NA | NA | NA | NA | NA | NA | |
PLE_Y_SS_AFFECTED_GOOD_MEAN | 11878 | 0.00 | NaN | NA | NA | NA | NA | NA | NA | |
PLE_Y_SS_AFFECTED_BAD_SUM | 11878 | 0.00 | NaN | NA | NA | NA | NA | NA | NA | |
PLE_Y_SS_AFFECTED_BAD_MEAN | 11878 | 0.00 | NaN | NA | NA | NA | NA | NA | NA | |
PPS_Y_SS_NUMBER | 11 | 1.00 | 2.63 | 3.56 | 0 | 0 | 1 | 4 | 21 | ▇▂▁▁▁ |
PPS_Y_SS_NUMBER_NM | 0 | 1.00 | 0.02 | 0.68 | 0 | 0 | 0 | 0 | 21 | ▇▁▁▁▁ |
PPS_Y_SS_NUMBER_NT | 0 | 1.00 | 21.00 | 0.00 | 21 | 21 | 21 | 21 | 21 | ▁▁▇▁▁ |
PPS_Y_SS_BOTHER_SUM | 4595 | 0.61 | 2.14 | 2.62 | 0 | 0 | 1 | 3 | 19 | ▇▂▁▁▁ |
PPS_Y_SS_BOTHER_SUM_NM | 0 | 1.00 | 18.37 | 3.56 | 0 | 17 | 20 | 21 | 21 | ▁▁▁▂▇ |
PPS_Y_SS_BOTHER_SUM_NT | 0 | 1.00 | 21.00 | 0.00 | 21 | 21 | 21 | 21 | 21 | ▁▁▇▁▁ |
PPS_Y_SS_BOTHER_N_1 | 4595 | 0.61 | 2.15 | 2.07 | 0 | 1 | 2 | 3 | 17 | ▇▂▁▁▁ |
PPS_Y_SS_BOTHER_N_1_NM | 0 | 1.00 | 18.37 | 3.56 | 0 | 17 | 20 | 21 | 21 | ▁▁▁▂▇ |
PPS_Y_SS_BOTHER_N_1_NT | 0 | 1.00 | 21.00 | 0.00 | 21 | 21 | 21 | 21 | 21 | ▁▁▇▁▁ |
PPS_Y_SS_SEVERITY_SCORE | 10 | 1.00 | 6.32 | 10.61 | 0 | 0 | 2 | 8 | 104 | ▇▁▁▁▁ |
PPS_Y_SS_SEVERITY_SCORE_NM | 0 | 1.00 | 38.05 | 5.67 | 3 | 36 | 40 | 42 | 42 | ▁▁▁▁▇ |
PPS_Y_SS_SEVERITY_SCORE_NT | 0 | 1.00 | 42.00 | 0.00 | 42 | 42 | 42 | 42 | 42 | ▁▁▇▁▁ |
PPS_SS_MEAN_SEVERITY | 4596 | 0.61 | 2.15 | 1.10 | 1 | 1 | 2 | 3 | 6 | ▇▃▂▁▁ |
UPPS_Y_SS_NEGATIVE_URGENCY | 23 | 1.00 | 8.49 | 2.65 | 4 | 7 | 8 | 10 | 16 | ▆▇▇▂▁ |
UPPS_Y_SS_NEGATIVE_URGENCY_NM | 0 | 1.00 | 0.01 | 0.17 | 0 | 0 | 0 | 0 | 4 | ▇▁▁▁▁ |
UPPS_Y_SS_NEGATIVE_URGENCY_NT | 0 | 1.00 | 4.00 | 0.00 | 4 | 4 | 4 | 4 | 4 | ▁▁▇▁▁ |
UPPS_Y_SS_LACK_OF_PLANNING | 23 | 1.00 | 7.74 | 2.38 | 4 | 6 | 8 | 9 | 16 | ▆▇▅▁▁ |
UPPS_Y_SS_LACK_OF_PLANNING_NM | 0 | 1.00 | 0.01 | 0.18 | 0 | 0 | 0 | 0 | 4 | ▇▁▁▁▁ |
UPPS_Y_SS_LACK_OF_PLANNING_NT | 0 | 1.00 | 4.00 | 0.00 | 4 | 4 | 4 | 4 | 4 | ▁▁▇▁▁ |
UPPS_Y_SS_SENSATION_SEEKING | 23 | 1.00 | 9.77 | 2.68 | 4 | 8 | 10 | 12 | 16 | ▂▅▇▃▂ |
UPPS_Y_SS_SENSATION_SEEKING_NM | 0 | 1.00 | 0.01 | 0.18 | 0 | 0 | 0 | 0 | 4 | ▇▁▁▁▁ |
UPPS_Y_SS_SENSATION_SEEKING_NT | 0 | 1.00 | 4.00 | 0.00 | 4 | 4 | 4 | 4 | 4 | ▁▁▇▁▁ |
UPPS_Y_SS_POSITIVE_URGENCY | 23 | 1.00 | 7.99 | 2.96 | 4 | 6 | 8 | 10 | 16 | ▇▆▆▂▁ |
UPPS_Y_SS_POSITIVE_URGENCY_NM | 0 | 1.00 | 0.01 | 0.18 | 0 | 0 | 0 | 0 | 4 | ▇▁▁▁▁ |
UPPS_Y_SS_POSITIVE_URGENCY_NT | 0 | 1.00 | 4.00 | 0.00 | 4 | 4 | 4 | 4 | 4 | ▁▁▇▁▁ |
UPPS_Y_SS_LACK_OF_PERSEVERANCE | 23 | 1.00 | 7.04 | 2.25 | 4 | 5 | 7 | 8 | 16 | ▇▆▃▁▁ |
UPPS_Y_SS_LACK_OF_PERS_NM | 0 | 1.00 | 0.01 | 0.18 | 0 | 0 | 0 | 0 | 4 | ▇▁▁▁▁ |
UPPS_Y_SS_LACK_OF_PERS_NT | 0 | 1.00 | 4.00 | 0.00 | 4 | 4 | 4 | 4 | 4 | ▁▁▇▁▁ |
BIS_Y_SS_BIS_SUM | 22 | 1.00 | 9.51 | 3.75 | 0 | 7 | 9 | 12 | 21 | ▂▇▇▃▁ |
BIS_Y_SS_BIS_SUM_NM | 22 | 1.00 | 0.00 | 0.00 | 0 | 0 | 0 | 0 | 0 | ▁▁▇▁▁ |
BIS_Y_SS_BIS_SUM_NT | 22 | 1.00 | 7.00 | 0.00 | 7 | 7 | 7 | 7 | 7 | ▁▁▇▁▁ |
BIS_Y_SS_BAS_RR | 23 | 1.00 | 11.00 | 2.92 | 0 | 9 | 11 | 13 | 15 | ▁▂▅▇▇ |
BIS_Y_SS_BAS_RR_NM | 23 | 1.00 | 0.00 | 0.00 | 0 | 0 | 0 | 0 | 0 | ▁▁▇▁▁ |
BIS_Y_SS_BAS_RR_NT | 23 | 1.00 | 5.00 | 0.00 | 5 | 5 | 5 | 5 | 5 | ▁▁▇▁▁ |
BIS_Y_SS_BAS_DRIVE | 23 | 1.00 | 4.14 | 3.06 | 0 | 2 | 4 | 6 | 12 | ▇▆▅▂▂ |
BIS_Y_SS_BAS_DRIVE_NM | 23 | 1.00 | 0.00 | 0.00 | 0 | 0 | 0 | 0 | 0 | ▁▁▇▁▁ |
BIS_Y_SS_BAS_DRIVE_NT | 23 | 1.00 | 4.00 | 0.00 | 4 | 4 | 4 | 4 | 4 | ▁▁▇▁▁ |
BIS_Y_SS_BAS_FS | 23 | 1.00 | 5.71 | 2.64 | 0 | 4 | 6 | 7 | 12 | ▂▅▇▃▂ |
BIS_Y_SS_BAS_FS_NM | 23 | 1.00 | 0.00 | 0.00 | 0 | 0 | 0 | 0 | 0 | ▁▁▇▁▁ |
BIS_Y_SS_BAS_FS_NT | 23 | 1.00 | 4.00 | 0.00 | 4 | 4 | 4 | 4 | 4 | ▁▁▇▁▁ |
BIS_Y_SS_BISM_SUM | 22 | 1.00 | 5.53 | 2.84 | 0 | 3 | 5 | 8 | 12 | ▃▅▇▃▂ |
BIS_Y_SS_BISM_SUM_NM | 22 | 1.00 | 0.00 | 0.00 | 0 | 0 | 0 | 0 | 0 | ▁▁▇▁▁ |
BIS_Y_SS_BISM_SUM_NT | 22 | 1.00 | 4.00 | 0.00 | 4 | 4 | 4 | 4 | 4 | ▁▁▇▁▁ |
BIS_Y_SS_BASM_RR | 23 | 1.00 | 8.82 | 2.39 | 0 | 7 | 9 | 11 | 12 | ▁▁▅▆▇ |
BIS_Y_SS_BASM_RR_NM | 23 | 1.00 | 0.00 | 0.00 | 0 | 0 | 0 | 0 | 0 | ▁▁▇▁▁ |
BIS_Y_SS_BASM_RR_NT | 23 | 1.00 | 4.00 | 0.00 | 4 | 4 | 4 | 4 | 4 | ▁▁▇▁▁ |
BIS_Y_SS_BASM_DRIVE | 23 | 1.00 | 4.14 | 3.06 | 0 | 2 | 4 | 6 | 12 | ▇▆▅▂▂ |
BIS_Y_SS_BASM_DRIVE_NM | 0 | 1.00 | 0.01 | 0.18 | 0 | 0 | 0 | 0 | 4 | ▇▁▁▁▁ |
BIS_Y_SS_BASM_DRIVE_NT | 0 | 1.00 | 4.00 | 0.00 | 4 | 4 | 4 | 4 | 4 | ▁▁▇▁▁ |
DELQ_Y_SS_SUM | 11878 | 0.00 | NaN | NA | NA | NA | NA | NA | NA | |
DELQ_Y_SS_SUM_NM | 11878 | 0.00 | NaN | NA | NA | NA | NA | NA | NA | |
DELQ_Y_SS_SUM_NT | 11878 | 0.00 | NaN | NA | NA | NA | NA | NA | NA | |
SUP_Y_SS_SUM | 11878 | 0.00 | NaN | NA | NA | NA | NA | NA | NA | |
SUP_Y_SS_SUM_NM | 11878 | 0.00 | NaN | NA | NA | NA | NA | NA | NA | |
SUP_Y_SS_SUM_NT | 11878 | 0.00 | NaN | NA | NA | NA | NA | NA | NA | |
GISH_Y_SS_M_SUM | 11878 | 0.00 | NaN | NA | NA | NA | NA | NA | NA | |
GISH_Y_SS_M_SUM_NM | 11878 | 0.00 | NaN | NA | NA | NA | NA | NA | NA | |
GISH_Y_SS_M_SUM_NT | 11878 | 0.00 | NaN | NA | NA | NA | NA | NA | NA | |
GISH_Y_SS_F_SUM | 11878 | 0.00 | NaN | NA | NA | NA | NA | NA | NA | |
GISH_Y_SS_F_SUM_NM | 11878 | 0.00 | NaN | NA | NA | NA | NA | NA | NA | |
GISH_Y_SS_F_SUM_NT | 11878 | 0.00 | NaN | NA | NA | NA | NA | NA | NA | |
PEQ_SS_RELATIONAL_AGGS_NM | 11878 | 0.00 | NaN | NA | NA | NA | NA | NA | NA | |
PEQ_SS_RELATIONAL_AGGS_NT | 11878 | 0.00 | NaN | NA | NA | NA | NA | NA | NA | |
PEQ_SS_RELATIONAL_VICTIM | 11878 | 0.00 | NaN | NA | NA | NA | NA | NA | NA | |
PEQ_SS_RELATIONAL_VICTIM_NM | 11878 | 0.00 | NaN | NA | NA | NA | NA | NA | NA | |
PEQ_SS_RELATIONAL_VICTIM_NT | 11878 | 0.00 | NaN | NA | NA | NA | NA | NA | NA | |
PEQ_SS_REPUTATION_AGGS | 11878 | 0.00 | NaN | NA | NA | NA | NA | NA | NA | |
PEQ_SS_REPUTATION_AGGS_NM | 11878 | 0.00 | NaN | NA | NA | NA | NA | NA | NA | |
PEQ_SS_REPUTATION_AGGS_NT | 11878 | 0.00 | NaN | NA | NA | NA | NA | NA | NA | |
PEQ_SS_REPUTATION_VICTIM | 11878 | 0.00 | NaN | NA | NA | NA | NA | NA | NA | |
PEQ_SS_REPUTATION_VICTIM_NM | 11878 | 0.00 | NaN | NA | NA | NA | NA | NA | NA | |
PEQ_SS_REPUTATION_VICTIM_NT | 11878 | 0.00 | NaN | NA | NA | NA | NA | NA | NA | |
PEQ_SS_OVERT_AGGRESSION | 11878 | 0.00 | NaN | NA | NA | NA | NA | NA | NA | |
PEQ_SS_OVERT_AGGRESSION_NM | 11878 | 0.00 | NaN | NA | NA | NA | NA | NA | NA | |
PEQ_SS_OVERT_AGGRESSION_NT | 11878 | 0.00 | NaN | NA | NA | NA | NA | NA | NA | |
PEQ_SS_OVERT_VICTIM | 11878 | 0.00 | NaN | NA | NA | NA | NA | NA | NA | |
PEQ_SS_OVERT_VICTIM_NM | 11878 | 0.00 | NaN | NA | NA | NA | NA | NA | NA | |
PEQ_SS_OVERT_VICTIM_NT | 11878 | 0.00 | NaN | NA | NA | NA | NA | NA | NA | |
PEQ_SS_RELATIONAL_AGGS | 11878 | 0.00 | NaN | NA | NA | NA | NA | NA | NA |
UPPS <- mentalHealthYouth %>% select(SUBJECTKEY,EVENTNAME,
UPPS_Y_SS_NEGATIVE_URGENCY, UPPS_Y_SS_LACK_OF_PLANNING,
UPPS_Y_SS_SENSATION_SEEKING, UPPS_Y_SS_POSITIVE_URGENCY, UPPS_Y_SS_LACK_OF_PERSEVERANCE)
basically only sleep related are good
not very relevant: ABCD Sum Scores Traumatic Brain Injury abcd_tbi01 ABCD Longitudinal Summary Scores Traumatic Brain Injury abcd_lsstbi01 ABCD Sum Scores Parent Sports and Activities Involvement abcd__spacss01 ABCD Longitudinal Summary Scores Sports Activity abcd_lsssa01 ABCD Sum Scores Parent Medical History abcd_medhxss01 ABCD Longitudinal Summary Scores Medical History abcd_lssmh01 ABCD Sum Scores Developmental History abcd_devhxss01
this is mainly about puberty: ABCD Sum Scores Physical Health Youth abcd_ssphy01
sleep scores: ABCD Parent Sleep Disturbance Scale for Children abcd_sds01 Diet only at one year follow up: ABCD Child Nutrition Assessment abcd_cna01 sum sleep score + diet ABCD Sum Scores Physical Health Parent abcd_ssphp01
#ABCD Parent Sleep Disturbance Scale for Children
#SLEEPDISTURB1_P
#How many hours of sleep does your child get on most nights? ¿Cuántas horas duerme su niño(a) la mayoría de las noches?
#1 = 9-11 hours/ 9 a 11 horas; 2 = 8-9 hours /8 a 9 horas; 3 = 7-8 hours /7 a 8 horas; 4 = 5-7 hours /5 a 7 horas; 5 = Less than 5 hours/ Menos de 5 horas// Consider each question pertaining to the PAST 6 MONTHS of the child's life
#SLEEPDISTURB2_P
#How long after going to bed does your child usually fall asleep? Después de acostarse ¿generalmente cuánto tiempo tarda su niño(a) en quedarse dormido(a)?
#1 = Less than 15 minutes /Menos de 15 minutos; 2 = 15-30 minutes 15 a 30 minutos; 3 = 30-45 minutes /30 a 45 minutos; 4 = 45-60 minutes /45 a 60 minutos; 5 = More than 60 minutes /M√°s de 60 minutos//Consider each question pertaining to the PAST 6 MONTHS of the child's life
sleepDis <-as_tibble(read.csv(paste0(dataFold,"ABCD_SDS01_DATA_TABLE.csv"))) %>%
distinct(select(.,-ABCD_SDS01_ID, -DATASET_ID),.keep_all = TRUE) #for some reason there is a duplicate based on these two variables
# sleepDis %>% filter(EVENTNAME =="baseline_year_1_arm_1") %>%
# distinct(select(.,-ABCD_SDS01_ID, -DATASET_ID),.keep_all = TRUE) %>%
# arrange(SUBJECTKEY)
sleepDis %>% filter(EVENTNAME =="baseline_year_1_arm_1") %>%
select(SLEEPDISTURB1_P,SLEEPDISTURB2_P) %>%
skimr::skim()
Name | Piped data |
Number of rows | 11878 |
Number of columns | 2 |
_______________________ | |
Column type frequency: | |
numeric | 2 |
________________________ | |
Group variables | None |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
SLEEPDISTURB1_P | 5 | 1 | 1.72 | 0.81 | 1 | 1 | 2 | 2 | 5 | ▇▆▂▁▁ |
SLEEPDISTURB2_P | 5 | 1 | 1.93 | 0.98 | 1 | 1 | 2 | 2 | 5 | ▇▇▂▁▁ |
PhysicalSum <-as_tibble(read.csv(paste0(dataFold,"ABCD_SSPHP01_DATA_TABLE.csv"))) %>%
filter(EVENTNAME =="baseline_year_1_arm_1")
PhysicalSum %>% select(-1:-8) %>% select(-STUDY_COHORT_NAME) %>%
skimr::skim()
Name | Piped data |
Number of rows | 11878 |
Number of columns | 36 |
_______________________ | |
Column type frequency: | |
numeric | 36 |
________________________ | |
Group variables | None |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
SDS_P_SS_DIMS | 5 | 1.00 | 11.75 | 3.75 | 7 | 9 | 11 | 13 | 35 | ▇▃▁▁▁ |
SDS_P_SS_DIMS_NM | 0 | 1.00 | 0.00 | 0.14 | 0 | 0 | 0 | 0 | 7 | ▇▁▁▁▁ |
SDS_P_SS_DIMS_NT | 0 | 1.00 | 7.00 | 0.00 | 7 | 7 | 7 | 7 | 7 | ▁▁▇▁▁ |
SDS_P_SS_SBD | 5 | 1.00 | 3.77 | 1.26 | 3 | 3 | 3 | 4 | 15 | ▇▁▁▁▁ |
SDS_P_SS_SBD_NM | 0 | 1.00 | 0.00 | 0.06 | 0 | 0 | 0 | 0 | 3 | ▇▁▁▁▁ |
SDS_P_SS_SBD_NT | 0 | 1.00 | 3.00 | 0.00 | 3 | 3 | 3 | 3 | 3 | ▁▁▇▁▁ |
SDS_P_SS_DA | 5 | 1.00 | 3.44 | 0.92 | 3 | 3 | 3 | 4 | 15 | ▇▁▁▁▁ |
SDS_P_SS_DA_NM | 0 | 1.00 | 0.00 | 0.06 | 0 | 0 | 0 | 0 | 3 | ▇▁▁▁▁ |
SDS_P_SS_DA_NT | 0 | 1.00 | 3.00 | 0.00 | 3 | 3 | 3 | 3 | 3 | ▁▁▇▁▁ |
SDS_P_SS_SWTD | 32 | 1.00 | 8.18 | 2.63 | 6 | 6 | 7 | 9 | 30 | ▇▁▁▁▁ |
SDS_P_SS_SWTD_NM | 0 | 1.00 | 0.00 | 0.13 | 0 | 0 | 0 | 0 | 6 | ▇▁▁▁▁ |
SDS_P_SS_SWTD_NT | 0 | 1.00 | 6.00 | 0.00 | 6 | 6 | 6 | 6 | 6 | ▁▁▇▁▁ |
SDS_P_SS_DOES | 6 | 1.00 | 6.95 | 2.44 | 5 | 5 | 6 | 8 | 25 | ▇▁▁▁▁ |
SDS_P_SS_DOES_NM | 0 | 1.00 | 0.00 | 0.10 | 0 | 0 | 0 | 0 | 5 | ▇▁▁▁▁ |
SDS_P_SS_DOES_NT | 0 | 1.00 | 5.00 | 0.00 | 5 | 5 | 5 | 5 | 5 | ▁▁▇▁▁ |
SDS_P_SS_SHY | 5 | 1.00 | 2.44 | 1.18 | 2 | 2 | 2 | 2 | 10 | ▇▁▁▁▁ |
SDS_P_SS_SHY_NM | 0 | 1.00 | 0.00 | 0.04 | 0 | 0 | 0 | 0 | 2 | ▇▁▁▁▁ |
SDS_P_SS_SHY_NT | 0 | 1.00 | 2.00 | 0.00 | 2 | 2 | 2 | 2 | 2 | ▁▁▇▁▁ |
SDS_P_SS_TOTAL | 33 | 1.00 | 36.53 | 8.24 | 26 | 31 | 35 | 40 | 126 | ▇▁▁▁▁ |
SDS_P_SS_TOTAL_NM | 0 | 1.00 | 0.01 | 0.54 | 0 | 0 | 0 | 0 | 26 | ▇▁▁▁▁ |
SDS_P_SS_TOTAL_NT | 0 | 1.00 | 26.00 | 0.00 | 26 | 26 | 26 | 26 | 26 | ▁▁▇▁▁ |
PDS_P_SS_MALE_CATEGORY | 5924 | 0.50 | 1.37 | 0.61 | 1 | 1 | 1 | 2 | 5 | ▇▃▁▁▁ |
PDS_P_SS_MALE_CAT_NM | 5714 | 0.52 | 0.04 | 0.26 | 0 | 0 | 0 | 0 | 3 | ▇▁▁▁▁ |
PDS_P_SS_MALE_CAT_NT | 5714 | 0.52 | 3.00 | 0.00 | 3 | 3 | 3 | 3 | 3 | ▁▁▇▁▁ |
PDS_P_SS_FEMALE_CATEGORY | 6384 | 0.46 | 2.18 | 0.91 | 1 | 1 | 2 | 3 | 5 | ▆▅▇▁▁ |
PDS_P_SS_FEMALE_CAT_NM | 6172 | 0.48 | 0.05 | 0.27 | 0 | 0 | 0 | 0 | 3 | ▇▁▁▁▁ |
PDS_P_SS_FEMALE_CAT_NT | 6172 | 0.48 | 3.00 | 0.00 | 3 | 3 | 3 | 3 | 3 | ▁▁▇▁▁ |
CNA_P_SS_SUM | 11878 | 0.00 | NaN | NA | NA | NA | NA | NA | NA | |
CNA_P_SS_SUM_NM | 1166 | 0.90 | 14.00 | 0.00 | 14 | 14 | 14 | 14 | 14 | ▁▁▇▁▁ |
CNA_P_SS_SUM_NT | 1166 | 0.90 | 14.00 | 0.00 | 14 | 14 | 14 | 14 | 14 | ▁▁▇▁▁ |
PDS_P_SS_FEMALE_CAT_2_NM | 6192 | 0.48 | 0.05 | 0.29 | 0 | 0 | 0 | 0 | 3 | ▇▁▁▁▁ |
PDS_P_SS_FEMALE_CAT_2_NT | 6192 | 0.48 | 3.00 | 0.00 | 3 | 3 | 3 | 3 | 3 | ▁▁▇▁▁ |
PDS_P_SS_FEMALE_CATEGORY_2 | 6414 | 0.46 | 2.18 | 0.91 | 1 | 1 | 2 | 3 | 5 | ▆▅▇▁▁ |
PDS_P_SS_MALE_CATEGORY_2 | 5934 | 0.50 | 1.36 | 0.61 | 1 | 1 | 1 | 2 | 5 | ▇▃▁▁▁ |
PDS_P_SS_MALE_CAT_2_NM | 5676 | 0.52 | 0.06 | 0.32 | 0 | 0 | 0 | 0 | 3 | ▇▁▁▁▁ |
PDS_P_SS_MALE_CAT_2_NT | 5676 | 0.52 | 3.00 | 0.00 | 3 | 3 | 3 | 3 | 3 | ▁▁▇▁▁ |
# sds_p_ss_dims
# Disorders of Initiating and Maintaining Sleep (DIMS) SUM: sleepdisturb1_p + sleepdisturb2_p + sleepdisturb3_p + sleepdisturb4_p + sleepdisturb5_p + sleepdisturb10_p + sleepdisturb11_p; Validation: All items must be answered
#
# sds_p_ss_sbd
# Sleep Breathing disorders (SBD): SUM sleepdisturb13_p + sleepdisturb14_p + sleepdisturb15_p; Validation: All items must be answered
#
# sds_p_ss_da
# Disorder of Arousal (DA) SUM: sleepdisturb17_p + sleepdisturb20_p + sleepdisturb21_p; Validation: All items must be answered
#
# sds_p_ss_swtd
# Sleep-Wake transition Disorders (SWTD) SUM: sleepdisturb6_p + sleepdisturb7_p + sleepdisturb8_p + sleepdisturb12_p + sleepdisturb18_p + sleepdisturb19_p; Validation: All items must be answered
#
# sds_p_ss_does
# Disorders of Excessive Somnolence (DOES) SUM: sleepdisturb22_p + sleepdisturb23_p + sleepdisturb24_p + sleepdisturb25_p + sleepdisturb26_p; Validation: All items must be answered
#
# sds_p_ss_shy
# Sleep Hyperhydrosis (SHY) SUM: sleepdisturb9_p + sleepdisturb16_p; Validation: All items must be answered
#
# sds_p_ss_total
# Total Score (Sum of 6 Factors): sds_p_ss_dims + sds_p_ss_sbd + sds_p_ss_da + sds_p_ss_swtd + sds_p_ss_does + sds_p_ss_shy; Validation: All items must be answered
sleepSum <- sleepDis %>% full_join(PhysicalSum, by = c("SUBJECTKEY", "EVENTNAME")) %>%
select(SUBJECTKEY, EVENTNAME, SLEEPDISTURB1_P, SLEEPDISTURB2_P,
SDS_P_SS_DIMS, SDS_P_SS_SBD, SDS_P_SS_DA, SDS_P_SS_SWTD, SDS_P_SS_DOES, SDS_P_SS_SHY, SDS_P_SS_TOTAL) %>%
rename(sleep_hours = SLEEPDISTURB1_P) %>%
rename(sleep_disturb = SLEEPDISTURB2_P) %>%
rename(sleep_initiate_maintain = SDS_P_SS_DIMS) %>%
rename(sleep_breath = SDS_P_SS_SBD) %>%
rename(sleep_arousal = SDS_P_SS_DA) %>%
rename(sleep_transition = SDS_P_SS_SWTD) %>%
rename(sleep_somnolence = SDS_P_SS_DOES) %>%
rename(sleep_hyperhydrosis = SDS_P_SS_SHY) %>%
rename(sleep_total = SDS_P_SS_TOTAL)
sleepSum %>% filter(EVENTNAME =="baseline_year_1_arm_1") %>%
select(-SUBJECTKEY,-EVENTNAME) %>%
skimr::skim()
Name | Piped data |
Number of rows | 11878 |
Number of columns | 9 |
_______________________ | |
Column type frequency: | |
numeric | 9 |
________________________ | |
Group variables | None |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
sleep_hours | 5 | 1 | 1.72 | 0.81 | 1 | 1 | 2 | 2 | 5 | ▇▆▂▁▁ |
sleep_disturb | 5 | 1 | 1.93 | 0.98 | 1 | 1 | 2 | 2 | 5 | ▇▇▂▁▁ |
sleep_initiate_maintain | 5 | 1 | 11.75 | 3.75 | 7 | 9 | 11 | 13 | 35 | ▇▃▁▁▁ |
sleep_breath | 5 | 1 | 3.77 | 1.26 | 3 | 3 | 3 | 4 | 15 | ▇▁▁▁▁ |
sleep_arousal | 5 | 1 | 3.44 | 0.92 | 3 | 3 | 3 | 4 | 15 | ▇▁▁▁▁ |
sleep_transition | 32 | 1 | 8.18 | 2.63 | 6 | 6 | 7 | 9 | 30 | ▇▁▁▁▁ |
sleep_somnolence | 6 | 1 | 6.95 | 2.44 | 5 | 5 | 6 | 8 | 25 | ▇▁▁▁▁ |
sleep_hyperhydrosis | 5 | 1 | 2.44 | 1.18 | 2 | 2 | 2 | 2 | 10 | ▇▁▁▁▁ |
sleep_total | 33 | 1 | 36.53 | 8.24 | 26 | 31 | 35 | 40 | 126 | ▇▁▁▁▁ |
ABCD Youth Screen Time Survey abcd_stq01
Youth Screen Time Survey This measure includes customized questions about the overall amount of time that the youth spends using visual media, on a typical weekday and weekend day. Media activities assessed include: (1) Watching TV shows or movies; (2) Watching videos (such as YouTube); (3) Playing video games on a computer, console, phone or other device; (4) Texting on a cell phone, tablet, or computer; (5) Visiting social networking sites like Facebook, Twitter, Instagram; (6) Video chat. Seven response options were: none, < 30 minutes, 30 minutes, 1 hour, 2 hours, 3 hours, and 4+ hours.
youthScreen <-as_tibble(read.csv(paste0(dataFold,"ABCD_STQ01_DATA_TABLE.csv")))
# filter(EVENTNAME =="baseline_year_1_arm_1")
#On a typical weekend/weekday, how many hours do you
#0 = None; .25 = < 30 minutes; 0.5 = 30 minutes; 1 = 1 hour; 2 = 2 hours; 3 = 3 hours; 4 = 4+ hours //Example: 1½ hours would be coded as 1 hour, rather than 2 hours.
#How often do you play mature-rated video games (e.g., Call of Duty, Grand Theft Auto, Assassin's Creed, etc.)?
#How often do you watch R-rated movies?
youthScreenAdded <- youthScreen %>%
mutate(wkdySum_Screen = rowSums(dplyr::select(.,ends_with("WKDY_Y")))) %>%
mutate(wkndSum_Screen = rowSums(dplyr::select(.,ends_with("WKND_Y")))) %>%
rename(matureGames_Screen = SCREEN13_Y) %>%
rename(matureMovies_Screen = SCREEN14_Y)
youthScreenSum <- youthScreenAdded %>%
select(SUBJECTKEY,EVENTNAME, ends_with("_Screen"))
youthScreenSum %>% filter(EVENTNAME =="baseline_year_1_arm_1") %>%
select(-SUBJECTKEY,-EVENTNAME) %>%
skimr::skim()
Name | Piped data |
Number of rows | 11878 |
Number of columns | 4 |
_______________________ | |
Column type frequency: | |
numeric | 4 |
________________________ | |
Group variables | None |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
matureGames_Screen | 20 | 1 | 0.57 | 0.87 | 0 | 0.00 | 0.0 | 1.00 | 3 | ▇▃▁▁▁ |
matureMovies_Screen | 21 | 1 | 0.38 | 0.64 | 0 | 0.00 | 0.0 | 1.00 | 3 | ▇▃▁▁▁ |
wkdySum_Screen | 38 | 1 | 3.46 | 3.10 | 0 | 1.25 | 2.5 | 4.75 | 24 | ▇▂▁▁▁ |
wkndSum_Screen | 43 | 1 | 4.62 | 3.63 | 0 | 2.00 | 3.5 | 6.25 | 24 | ▇▃▁▁▁ |
#ABCD Developmental History Questionnaire
DevHis <-as_tibble(read.csv(paste0(dataFold,"DHX01_DATA_TABLE.csv"))) %>%
#filter(VISIT =="baseline_year_1_arm_1") %>%
rename(EVENTNAME = VISIT)
#glimpse(DevHis)
DevHis %>% filter(EVENTNAME =="baseline_year_1_arm_1") %>%
select(starts_with("DEVHX_8")) %>%
skimr::skim()
Name | Piped data |
Number of rows | 11878 |
Number of columns | 83 |
_______________________ | |
Column type frequency: | |
character | 3 |
logical | 10 |
numeric | 70 |
________________________ | |
Group variables | None |
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
DEVHX_8_RXNORM_MED1 | 0 | 1 | 0 | 94 | 10580 | 541 | 0 |
DEVHX_8_OTHER1_NAME_OTH | 0 | 1 | 0 | 36 | 11856 | 19 | 0 |
DEVHX_8_OTHER3_NAME_OTH | 0 | 1 | 0 | 30 | 11874 | 5 | 0 |
Variable type: logical
skim_variable | n_missing | complete_rate | mean | count |
---|---|---|---|---|
DEVHX_8_PRESCRIPT_YES | 11878 | 0 | NaN | : |
DEVHX_8_OTHER2_NAME_OTH | 11878 | 0 | NaN | : |
DEVHX_8_OTHER4_NAME_OTH | 11878 | 0 | NaN | : |
DEVHX_8_OTHER4_TIMES | 11878 | 0 | NaN | : |
DEVHX_8_OTHER4_AMT | 11878 | 0 | NaN | : |
DEVHX_8_OTHER4_UNIT | 11878 | 0 | NaN | : |
DEVHX_8_OTHER5_NAME_OTH | 11878 | 0 | NaN | : |
DEVHX_8_OTHER5_TIMES | 11878 | 0 | NaN | : |
DEVHX_8_OTHER5_AMT | 11878 | 0 | NaN | : |
DEVHX_8_OTHER5_UNIT | 11878 | 0 | NaN | : |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
DEVHX_8_PRESCRIPT_MED | 5 | 1.00 | 73.99 | 261.41 | 0 | 0.00 | 0.0 | 0.00 | 999 | ▇▁▁▁▁ |
DEVHX_8_MED1_PRN | 11247 | 0.05 | 36.69 | 187.31 | 0 | 0.00 | 0.0 | 1.00 | 999 | ▇▁▁▁▁ |
DEVHX_8_MED1_TIMES | 10808 | 0.09 | 1.26 | 0.75 | 0 | 1.00 | 1.0 | 1.00 | 10 | ▇▁▁▁▁ |
DEVHX_8_MED1_TIMES_DK | 11720 | 0.01 | 999.00 | 0.00 | 999 | 999.00 | 999.0 | 999.00 | 999 | ▁▁▇▁▁ |
DEVHX_8_MED1_HOW_MUCH | 10971 | 0.08 | 82.50 | 191.78 | 0 | 1.00 | 10.0 | 88.00 | 2000 | ▇▁▁▁▁ |
DEVHX_8_MED1_HOW_MUCH_DK | 11454 | 0.04 | 999.00 | 0.00 | 999 | 999.00 | 999.0 | 999.00 | 999 | ▁▁▇▁▁ |
DEVHX_8_MED1_UNIT | 11046 | 0.07 | 2.69 | 0.79 | 1 | 2.75 | 3.0 | 3.00 | 10 | ▃▇▁▁▁ |
DEVHX_8_MED1_FU | 11101 | 0.07 | 0.25 | 0.43 | 0 | 0.00 | 0.0 | 1.00 | 1 | ▇▁▁▁▃ |
DEVHX_8_RXNORM_MED2 | 11693 | 0.02 | 621559.43 | 539911.02 | 281 | 196496.00 | 372861.0 | 1151133.00 | 1806414 | ▇▁▂▃▁ |
DEVHX_8_MED2_PRN | 11711 | 0.01 | 36.19 | 186.43 | 0 | 0.00 | 0.0 | 1.00 | 999 | ▇▁▁▁▁ |
DEVHX_8_MED2_TIMES | 11732 | 0.01 | 1.40 | 0.77 | 0 | 1.00 | 1.0 | 2.00 | 6 | ▇▂▁▁▁ |
DEVHX_8_MED2_TIMES_DK | 11846 | 0.00 | 999.00 | 0.00 | 999 | 999.00 | 999.0 | 999.00 | 999 | ▁▁▇▁▁ |
DEVHX_8_MED2_HOW_MUCH | 11784 | 0.01 | 87.57 | 247.66 | 0 | 1.00 | 2.5 | 50.00 | 2000 | ▇▁▁▁▁ |
DEVHX_8_MED2_HOW_MUCH_DK | 11790 | 0.01 | 999.00 | 0.00 | 999 | 999.00 | 999.0 | 999.00 | 999 | ▁▁▇▁▁ |
DEVHX_8_MED2_UNIT | 11793 | 0.01 | 2.74 | 1.09 | 1 | 2.00 | 3.0 | 3.00 | 10 | ▃▇▁▁▁ |
DEVHX_8_MED2_FU | 11700 | 0.01 | 0.26 | 0.44 | 0 | 0.00 | 0.0 | 1.00 | 1 | ▇▁▁▁▃ |
DEVHX_8_RXNORM_MED3 | 11833 | 0.00 | 537198.29 | 483611.33 | 1191 | 82728.00 | 324026.0 | 1151133.00 | 1187033 | ▇▁▁▂▅ |
DEVHX_8_MED3_PRN | 11848 | 0.00 | 0.27 | 0.45 | 0 | 0.00 | 0.0 | 0.75 | 1 | ▇▁▁▁▃ |
DEVHX_8_MED3_TIMES | 11821 | 0.00 | 1.30 | 0.80 | 0 | 1.00 | 1.0 | 1.00 | 4 | ▁▇▂▁▁ |
DEVHX_8_MED3_TIMES_DK | 11868 | 0.00 | 999.00 | 0.00 | 999 | 999.00 | 999.0 | 999.00 | 999 | ▁▁▇▁▁ |
DEVHX_8_MED3_HOW_MUCH | 11854 | 0.00 | 189.33 | 478.06 | 0 | 1.00 | 1.5 | 42.50 | 2000 | ▇▁▁▁▁ |
DEVHX_8_MED3_HOW_MUCH_DK | 11855 | 0.00 | 999.00 | 0.00 | 999 | 999.00 | 999.0 | 999.00 | 999 | ▁▁▇▁▁ |
DEVHX_8_MED3_UNIT | 11858 | 0.00 | 2.55 | 0.76 | 1 | 2.00 | 3.0 | 3.00 | 3 | ▂▁▂▁▇ |
DEVHX_8_TOBACCO | 5 | 1.00 | 23.11 | 149.72 | 0 | 0.00 | 0.0 | 0.00 | 999 | ▇▁▁▁▁ |
DEVHX_8_CIGS_PER_DAY | 10454 | 0.12 | 8.35 | 6.44 | 0 | 4.00 | 6.0 | 10.00 | 80 | ▇▁▁▁▁ |
DEVHX_8_CIGS_PER_DAY_DK | 11691 | 0.02 | 999.00 | 0.00 | 999 | 999.00 | 999.0 | 999.00 | 999 | ▁▁▇▁▁ |
DEVHX_8_ALCOHOL | 5 | 1.00 | 57.29 | 231.76 | 0 | 0.00 | 0.0 | 1.00 | 999 | ▇▁▁▁▁ |
DEVHX_8_ALCHOHOL_MAX | 9336 | 0.21 | 2.40 | 1.50 | 0 | 1.00 | 2.0 | 3.00 | 20 | ▇▁▁▁▁ |
DEVHX_8_ALCHOHOL_MAX_DK | 11538 | 0.03 | 999.00 | 0.00 | 999 | 999.00 | 999.0 | 999.00 | 999 | ▁▁▇▁▁ |
DEVHX_8_ALCHOHOL_AVG | 9371 | 0.21 | 3.97 | 4.38 | 0 | 1.00 | 3.0 | 5.00 | 52 | ▇▁▁▁▁ |
DEVHX_8_ALCHOHOL_AVG_DK | 11503 | 0.03 | 999.00 | 0.00 | 999 | 999.00 | 999.0 | 999.00 | 999 | ▁▁▇▁▁ |
DEVHX_8_ALCOHOL_EFFECTS | 9514 | 0.20 | 2.08 | 1.24 | 0 | 1.00 | 2.0 | 2.00 | 20 | ▇▁▁▁▁ |
DEVHX_8_ALCOHOL_EFFECTS_DK | 11360 | 0.04 | 999.00 | 0.00 | 999 | 999.00 | 999.0 | 999.00 | 999 | ▁▁▇▁▁ |
DEVHX_8_MARIJUANA | 5 | 1.00 | 28.24 | 165.42 | 0 | 0.00 | 0.0 | 0.00 | 999 | ▇▁▁▁▁ |
DEVHX_8_MARIJUANA_AMT | 11389 | 0.04 | 2.09 | 2.49 | 0 | 1.00 | 2.0 | 3.00 | 40 | ▇▁▁▁▁ |
DEVHX_8_MARIJUANA_AMT_DK | 11687 | 0.02 | 999.00 | 0.00 | 999 | 999.00 | 999.0 | 999.00 | 999 | ▁▁▇▁▁ |
DEVHX_8_COC_CRACK | 5 | 1.00 | 23.74 | 152.13 | 0 | 0.00 | 0.0 | 0.00 | 999 | ▇▁▁▁▁ |
DEVHX_8_COC_CRACK_AMT | 11845 | 0.00 | 3.00 | 3.71 | 0 | 1.00 | 2.0 | 3.00 | 20 | ▇▁▁▁▁ |
DEVHX_8_COC_CRACK_AMT_DK | 11817 | 0.01 | 999.00 | 0.00 | 999 | 999.00 | 999.0 | 999.00 | 999 | ▁▁▇▁▁ |
DEVHX_8_HER_MORPH | 5 | 1.00 | 24.40 | 154.22 | 0 | 0.00 | 0.0 | 0.00 | 999 | ▇▁▁▁▁ |
DEVHX_8_HER_MORPH_AMT | 11875 | 0.00 | 2.67 | 1.15 | 2 | 2.00 | 2.0 | 3.00 | 4 | ▇▁▁▁▃ |
DEVHX_8_HER_MORPH_AMT_DK | 11857 | 0.00 | 999.00 | 0.00 | 999 | 999.00 | 999.0 | 999.00 | 999 | ▁▁▇▁▁ |
DEVHX_8_OXYCONT | 5 | 1.00 | 25.08 | 156.28 | 0 | 0.00 | 0.0 | 0.00 | 999 | ▇▁▁▁▁ |
DEVHX_8_OXYCONT_AMT | 11863 | 0.00 | 2.13 | 1.19 | 0 | 1.00 | 2.0 | 3.00 | 4 | ▂▇▇▇▃ |
DEVHX_8_OXYCONT_AMT_DK | 11851 | 0.00 | 999.00 | 0.00 | 999 | 999.00 | 999.0 | 999.00 | 999 | ▁▁▇▁▁ |
DEVHX_8_OTHER_DRUGS | 5 | 1.00 | 32.07 | 176.07 | 0 | 0.00 | 0.0 | 0.00 | 999 | ▇▁▁▁▁ |
DEVHX_8_OTHER1_NAME_2 | 11781 | 0.01 | 46.53 | 198.62 | 0 | 1.00 | 3.0 | 12.00 | 999 | ▇▁▁▁▁ |
DEVHX_8_OTHER1_TIMES | 11831 | 0.00 | 1.94 | 1.98 | 0 | 1.00 | 1.0 | 2.00 | 10 | ▇▂▁▁▁ |
DEVHX_8_OTHER1_TIMES_DK | 11826 | 0.00 | 999.00 | 0.00 | 999 | 999.00 | 999.0 | 999.00 | 999 | ▁▁▇▁▁ |
DEVHX_8_OTHER1_AMT | 11847 | 0.00 | 92.94 | 286.57 | 0 | 1.00 | 2.0 | 16.50 | 1500 | ▇▁▁▁▁ |
DEVHX_8_OTHER1_AMT_DK | 11810 | 0.01 | 999.00 | 0.00 | 999 | 999.00 | 999.0 | 999.00 | 999 | ▁▁▇▁▁ |
DEVHX_8_OTHER1_UNIT | 11848 | 0.00 | 3.20 | 2.11 | 1 | 1.25 | 3.0 | 3.00 | 7 | ▆▇▁▁▃ |
DEVHX_8_OTHER2_NAME_2 | 11799 | 0.01 | 13.77 | 112.32 | 0 | 0.00 | 0.0 | 0.00 | 999 | ▇▁▁▁▁ |
DEVHX_8_OTHER2_TIMES | 11873 | 0.00 | 1.40 | 0.89 | 1 | 1.00 | 1.0 | 1.00 | 3 | ▇▁▁▁▂ |
DEVHX_8_OTHER2_TIMES_DK | 11871 | 0.00 | 999.00 | 0.00 | 999 | 999.00 | 999.0 | 999.00 | 999 | ▁▁▇▁▁ |
DEVHX_8_OTHER2_AMT | 11876 | 0.00 | 6.00 | 2.83 | 4 | 5.00 | 6.0 | 7.00 | 8 | ▇▁▁▁▇ |
DEVHX_8_OTHER2_AMT_DK | 11868 | 0.00 | 999.00 | 0.00 | 999 | 999.00 | 999.0 | 999.00 | 999 | ▁▁▇▁▁ |
DEVHX_8_OTHER2_UNIT | 11876 | 0.00 | 5.00 | 2.83 | 3 | 4.00 | 5.0 | 6.00 | 7 | ▇▁▁▁▇ |
DEVHX_8_OTHER3_NAME_2 | 11870 | 0.00 | 3.00 | 5.26 | 0 | 0.00 | 0.0 | 3.50 | 12 | ▇▁▁▁▂ |
DEVHX_8_OTHER3_TIMES | 11876 | 0.00 | 2.00 | 1.41 | 1 | 1.50 | 2.0 | 2.50 | 3 | ▇▁▁▁▇ |
DEVHX_8_OTHER3_TIMES_DK | 11877 | 0.00 | 999.00 | NA | 999 | 999.00 | 999.0 | 999.00 | 999 | ▁▁▇▁▁ |
DEVHX_8_OTHER3_AMT | 11877 | 0.00 | 10.00 | NA | 10 | 10.00 | 10.0 | 10.00 | 10 | ▁▁▇▁▁ |
DEVHX_8_OTHER3_AMT_DK | 11876 | 0.00 | 999.00 | 0.00 | 999 | 999.00 | 999.0 | 999.00 | 999 | ▁▁▇▁▁ |
DEVHX_8_OTHER3_UNIT | 11877 | 0.00 | 3.00 | NA | 3 | 3.00 | 3.0 | 3.00 | 3 | ▁▁▇▁▁ |
DEVHX_8_OTHER4_NAME_2 | 11875 | 0.00 | 0.33 | 0.58 | 0 | 0.00 | 0.0 | 0.50 | 1 | ▇▁▁▁▃ |
DEVHX_8_OTHER4_TIMES_DK | 11877 | 0.00 | 999.00 | NA | 999 | 999.00 | 999.0 | 999.00 | 999 | ▁▁▇▁▁ |
DEVHX_8_OTHER4_AMT_DK | 11877 | 0.00 | 999.00 | NA | 999 | 999.00 | 999.0 | 999.00 | 999 | ▁▁▇▁▁ |
DEVHX_8_OTHER5_NAME_2 | 11877 | 0.00 | 1.00 | NA | 1 | 1.00 | 1.0 | 1.00 | 1 | ▁▁▇▁▁ |
DEVHX_8_OTHER5_TIMES_DK | 11877 | 0.00 | 999.00 | NA | 999 | 999.00 | 999.0 | 999.00 | 999 | ▁▁▇▁▁ |
DEVHX_8_OTHER5_AMT_DK | 11877 | 0.00 | 999.00 | NA | 999 | 999.00 | 999.0 | 999.00 | 999 | ▁▁▇▁▁ |
#devhx_8_tobacco
#Before knowing of pregnancy. Tobacco? How many times per day?/ ?Cuantas veces al d?a?
#devhx_9_tobacco
#Knowing of pregnancy. Tobacco? How many times per day?/ ?Cuantas veces al d?a?
#devhx_8_alcohol
#Before knowing of pregnancy. Alcohol? /?Alcohol?
#devhx_9_alcohol
#Knowing of pregnancy. Alcohol? /?Alcohol?
#devhx_8_marijuana
#Before knowing of pregnancy. Marijuana? /?Marihuana?
#devhx_9_marijuana
#Knowing of pregnancy. Marijuana? /?Marihuana?
# change name and replace 999 with na
momSubstanceUse <- DevHis %>%
mutate(tobacco_before_preg = as.factor(DEVHX_8_TOBACCO)) %>%
mutate(tobacco_after_preg = as.factor(DEVHX_9_TOBACCO)) %>%
mutate(alcohol_before_preg = as.factor(DEVHX_8_ALCOHOL)) %>%
mutate(alcohol_after_preg = as.factor(DEVHX_9_ALCOHOL)) %>%
mutate(marijuana_before_preg = as.factor(DEVHX_8_MARIJUANA)) %>%
mutate(marijuana_after_preg = as.factor(DEVHX_9_MARIJUANA)) %>%
mutate(across(ends_with("_preg"), ~na_if(., 999))) %>%
select(SUBJECTKEY,EVENTNAME, ends_with("_preg")) %>%
droplevels()
momSubstanceUse %>% filter(EVENTNAME =="baseline_year_1_arm_1") %>%
select(-SUBJECTKEY,-EVENTNAME) %>%
skimr::skim()
Name | Piped data |
Number of rows | 11878 |
Number of columns | 6 |
_______________________ | |
Column type frequency: | |
factor | 6 |
________________________ | |
Group variables | None |
Variable type: factor
skim_variable | n_missing | complete_rate | ordered | n_unique | top_counts |
---|---|---|---|---|---|
tobacco_before_preg | 278 | 0.98 | FALSE | 2 | 0: 9989, 1: 1611 |
tobacco_after_preg | 265 | 0.98 | FALSE | 2 | 0: 10993, 1: 620 |
alcohol_before_preg | 683 | 0.94 | FALSE | 2 | 0: 8313, 1: 2882 |
alcohol_after_preg | 293 | 0.98 | FALSE | 2 | 0: 11270, 1: 315 |
marijuana_before_preg | 340 | 0.97 | FALSE | 2 | 0: 10851, 1: 687 |
marijuana_after_preg | 277 | 0.98 | FALSE | 2 | 0: 11356, 1: 245 |
DevHis %>% filter(EVENTNAME =="baseline_year_1_arm_1") %>%
select(starts_with(c("BIRTH_WEIGHT","DEVHX_10","DEVHX_12","DEVHX_13","DEVHX_14"))) %>%
skimr::skim()
Name | Piped data |
Number of rows | 11878 |
Number of columns | 27 |
_______________________ | |
Column type frequency: | |
logical | 2 |
numeric | 25 |
________________________ | |
Group variables | None |
Variable type: logical
skim_variable | n_missing | complete_rate | mean | count |
---|---|---|---|---|
BIRTH_WEIGHT_LBS | 11878 | 0 | NaN | : |
BIRTH_WEIGHT_OZ | 11878 | 0 | NaN | : |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
DEVHX_10 | 9 | 1.00 | 39.30 | 191.84 | -1 | 1 | 1 | 1 | 999 | ▇▁▁▁▁ |
DEVHX_10A3_P | 4 | 1.00 | 32.53 | 176.93 | 0 | 0 | 0 | 0 | 999 | ▇▁▁▁▁ |
DEVHX_10B3_P | 4 | 1.00 | 27.22 | 162.51 | 0 | 0 | 0 | 0 | 999 | ▇▁▁▁▁ |
DEVHX_10C3_P | 4 | 1.00 | 32.47 | 176.94 | 0 | 0 | 0 | 0 | 999 | ▇▁▁▁▁ |
DEVHX_10D3_P | 4 | 1.00 | 27.94 | 164.70 | 0 | 0 | 0 | 0 | 999 | ▇▁▁▁▁ |
DEVHX_10E3_P | 4 | 1.00 | 34.16 | 181.55 | 0 | 0 | 0 | 0 | 999 | ▇▁▁▁▁ |
DEVHX_10F3_P | 4 | 1.00 | 26.25 | 159.80 | 0 | 0 | 0 | 0 | 999 | ▇▁▁▁▁ |
DEVHX_10G3_P | 4 | 1.00 | 31.51 | 174.48 | 0 | 0 | 0 | 0 | 999 | ▇▁▁▁▁ |
DEVHX_10H3_P | 4 | 1.00 | 39.36 | 194.18 | 0 | 0 | 0 | 0 | 999 | ▇▁▁▁▁ |
DEVHX_10I3_P | 4 | 1.00 | 30.86 | 172.66 | 0 | 0 | 0 | 0 | 999 | ▇▁▁▁▁ |
DEVHX_10J3_P | 4 | 1.00 | 34.00 | 180.88 | 0 | 0 | 0 | 0 | 999 | ▇▁▁▁▁ |
DEVHX_10K3_P | 4 | 1.00 | 30.07 | 170.60 | 0 | 0 | 0 | 0 | 999 | ▇▁▁▁▁ |
DEVHX_10L3_P | 4 | 1.00 | 26.69 | 161.04 | 0 | 0 | 0 | 0 | 999 | ▇▁▁▁▁ |
DEVHX_10M3_P | 4 | 1.00 | 29.02 | 167.55 | 0 | 0 | 0 | 0 | 999 | ▇▁▁▁▁ |
DEVHX_12A_P | 5 | 1.00 | 11.97 | 107.82 | 0 | 0 | 0 | 0 | 999 | ▇▁▁▁▁ |
DEVHX_12_P | 9670 | 0.19 | 17.10 | 109.30 | 1 | 3 | 4 | 6 | 999 | ▇▁▁▁▁ |
DEVHX_13_3_P | 5 | 1.00 | 12.58 | 109.69 | 0 | 0 | 0 | 1 | 999 | ▇▁▁▁▁ |
DEVHX_14A3_P | 5 | 1.00 | 26.70 | 161.04 | 0 | 0 | 0 | 0 | 999 | ▇▁▁▁▁ |
DEVHX_14B3_P | 5 | 1.00 | 28.55 | 166.38 | 0 | 0 | 0 | 0 | 999 | ▇▁▁▁▁ |
DEVHX_14C3_P | 5 | 1.00 | 25.04 | 156.01 | 0 | 0 | 0 | 0 | 999 | ▇▁▁▁▁ |
DEVHX_14D3_P | 5 | 1.00 | 18.43 | 134.43 | 0 | 0 | 0 | 0 | 999 | ▇▁▁▁▁ |
DEVHX_14E3_P | 5 | 1.00 | 24.22 | 153.15 | 0 | 0 | 0 | 0 | 999 | ▇▁▁▁▁ |
DEVHX_14F3_P | 5 | 1.00 | 25.08 | 156.01 | 0 | 0 | 0 | 0 | 999 | ▇▁▁▁▁ |
DEVHX_14G3_P | 5 | 1.00 | 17.42 | 130.76 | 0 | 0 | 0 | 0 | 999 | ▇▁▁▁▁ |
DEVHX_14H3_P | 6 | 1.00 | 34.36 | 181.99 | 0 | 0 | 0 | 0 | 999 | ▇▁▁▁▁ |
#devhx_12a_p
#Was the child born prematurely? /?Naci? el ni?o o la ni?a antes de tiempo?
adversitySum <- DevHis %>%
mutate(across(starts_with("DEVHX_"), ~na_if(., 999))) %>%
mutate(deveplopment_prematurity = as.factor(DEVHX_12A_P)) %>%
mutate(deveplopment_birth_complications = rowSums(dplyr::select(.,starts_with("DEVHX_14")))) %>%
#mutate(deveplopment_birth_kg = BIRTH_WEIGHT_LBS*0.453592) %>% #all na???
mutate(deveplopment_pregnancy_complications = rowSums(select(.,DEVHX_10A3_P:DEVHX_10L3_P))) %>%
select(SUBJECTKEY,EVENTNAME, starts_with("deveplopment_"))
adversitySum %>% filter(EVENTNAME =="baseline_year_1_arm_1") %>%
select(-SUBJECTKEY,-EVENTNAME) %>%
skimr::skim()
Name | Piped data |
Number of rows | 11878 |
Number of columns | 3 |
_______________________ | |
Column type frequency: | |
factor | 1 |
numeric | 2 |
________________________ | |
Group variables | None |
Variable type: factor
skim_variable | n_missing | complete_rate | ordered | n_unique | top_counts |
---|---|---|---|---|---|
deveplopment_prematurity | 145 | 0.99 | FALSE | 2 | 0: 9525, 1: 2208 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
deveplopment_birth_complications | 760 | 0.94 | 0.37 | 0.75 | 0 | 0 | 0 | 1 | 8 | ▇▁▁▁▁ |
deveplopment_pregnancy_complications | 744 | 0.94 | 0.61 | 1.02 | 0 | 0 | 0 | 1 | 12 | ▇▁▁▁▁ |
most events are quite rare.
brainTruma <- as_tibble(read.csv(paste0(dataFold,"ABCD_OTBI01_DATA_TABLE.csv")))
brainTruma %>% filter(EVENTNAME =="baseline_year_1_arm_1") %>%
select(-1:-8) %>%
skimr::skim()
Name | Piped data |
Number of rows | 11878 |
Number of columns | 40 |
_______________________ | |
Column type frequency: | |
character | 1 |
logical | 3 |
numeric | 36 |
________________________ | |
Group variables | None |
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
STUDY_COHORT_NAME | 0 | 1 | 21 | 21 | 0 | 1 | 0 |
Variable type: logical
skim_variable | n_missing | complete_rate | mean | count |
---|---|---|---|---|
TBI_8I | 11878 | 0 | NaN | : |
TBI_8K | 11878 | 0 | NaN | : |
TBI_8L | 11878 | 0 | NaN | : |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
TBI_SELECT_LANGUAGE___1 | 0 | 1.00 | 0.05 | 0.23 | 0.0 | 0.00 | 0.0 | 0.00 | 1 | ▇▁▁▁▁ |
TBI_1 | 4 | 1.00 | 0.12 | 0.33 | 0.0 | 0.00 | 0.0 | 0.00 | 1 | ▇▁▁▁▁ |
TBI_1B | 10436 | 0.12 | 0.07 | 0.28 | 0.0 | 0.00 | 0.0 | 0.00 | 3 | ▇▁▁▁▁ |
TBI_1C | 10438 | 0.12 | 0.17 | 0.37 | 0.0 | 0.00 | 0.0 | 0.00 | 1 | ▇▁▁▁▂ |
TBI_1D | 10437 | 0.12 | 4.98 | 2.63 | 0.0 | 3.00 | 5.0 | 7.00 | 11 | ▇▇▇▇▃ |
TBI_2 | 4 | 1.00 | 0.02 | 0.12 | 0.0 | 0.00 | 0.0 | 0.00 | 1 | ▇▁▁▁▁ |
TBI_2B | 11690 | 0.02 | 0.04 | 0.19 | 0.0 | 0.00 | 0.0 | 0.00 | 1 | ▇▁▁▁▁ |
TBI_2C | 11690 | 0.02 | 0.12 | 0.33 | 0.0 | 0.00 | 0.0 | 0.00 | 1 | ▇▁▁▁▁ |
TBI_2D | 11690 | 0.02 | 6.61 | 2.18 | 0.0 | 5.00 | 7.0 | 8.00 | 10 | ▁▂▅▇▃ |
TBI_3 | 4 | 1.00 | 0.12 | 0.33 | 0.0 | 0.00 | 0.0 | 0.00 | 1 | ▇▁▁▁▁ |
TBI_3B | 10398 | 0.12 | 0.04 | 0.21 | 0.0 | 0.00 | 0.0 | 0.00 | 3 | ▇▁▁▁▁ |
TBI_3C | 10399 | 0.12 | 0.16 | 0.37 | 0.0 | 0.00 | 0.0 | 0.00 | 1 | ▇▁▁▁▂ |
TBI_3D | 10400 | 0.12 | 5.86 | 2.70 | 0.0 | 4.00 | 6.0 | 8.00 | 11 | ▅▅▆▇▅ |
TBI_4 | 4 | 1.00 | 0.00 | 0.07 | 0.0 | 0.00 | 0.0 | 0.00 | 1 | ▇▁▁▁▁ |
TBI_4B | 11819 | 0.00 | 0.02 | 0.13 | 0.0 | 0.00 | 0.0 | 0.00 | 1 | ▇▁▁▁▁ |
TBI_4C | 11819 | 0.00 | 0.17 | 0.38 | 0.0 | 0.00 | 0.0 | 0.00 | 1 | ▇▁▁▁▂ |
TBI_4D | 11819 | 0.00 | 6.53 | 2.44 | 0.0 | 5.00 | 7.0 | 8.00 | 10 | ▂▂▅▇▅ |
TBI_5 | 4 | 1.00 | 0.00 | 0.03 | 0.0 | 0.00 | 0.0 | 0.00 | 1 | ▇▁▁▁▁ |
TBI_5B | 11868 | 0.00 | 0.00 | 0.00 | 0.0 | 0.00 | 0.0 | 0.00 | 0 | ▁▁▇▁▁ |
TBI_5C | 11868 | 0.00 | 0.00 | 0.00 | 0.0 | 0.00 | 0.0 | 0.00 | 0 | ▁▁▇▁▁ |
TBI_5D | 11868 | 0.00 | 5.10 | 2.91 | 1.5 | 2.25 | 5.5 | 7.75 | 9 | ▇▁▃▂▆ |
TBI_6O | 4 | 1.00 | 0.00 | 0.03 | 0.0 | 0.00 | 0.0 | 0.00 | 1 | ▇▁▁▁▁ |
TBI_6P | 11869 | 0.00 | 1.67 | 1.12 | 1.0 | 1.00 | 1.0 | 2.00 | 4 | ▇▁▁▁▁ |
TBI_6Q | 11869 | 0.00 | 1.78 | 1.20 | 0.0 | 1.00 | 2.0 | 2.00 | 4 | ▂▇▇▂▂ |
TBI_6R | 11869 | 0.00 | 0.00 | 0.00 | 0.0 | 0.00 | 0.0 | 0.00 | 0 | ▁▁▇▁▁ |
TBI_6S | 11869 | 0.00 | 4.56 | 3.71 | 1.0 | 1.00 | 3.0 | 8.00 | 10 | ▇▂▂▂▃ |
TBI_7A | 4 | 1.00 | 0.01 | 0.09 | 0.0 | 0.00 | 0.0 | 0.00 | 1 | ▇▁▁▁▁ |
TBI_7C1 | 11771 | 0.01 | 0.07 | 0.37 | 0.0 | 0.00 | 0.0 | 0.00 | 3 | ▇▁▁▁▁ |
TBL_7C2 | 11775 | 0.01 | 0.08 | 0.27 | 0.0 | 0.00 | 0.0 | 0.00 | 1 | ▇▁▁▁▁ |
TBI_7E | 11771 | 0.01 | 4.50 | 3.63 | 0.0 | 1.00 | 5.0 | 8.00 | 10 | ▇▁▂▅▃ |
TBI_7F | 11771 | 0.01 | 5.62 | 4.11 | 0.0 | 0.50 | 8.0 | 9.00 | 10 | ▆▂▁▂▇ |
TBI_7G | 11771 | 0.01 | 0.02 | 0.14 | 0.0 | 0.00 | 0.0 | 0.00 | 1 | ▇▁▁▁▁ |
TBI_7I | 11876 | 0.00 | 1.00 | 0.00 | 1.0 | 1.00 | 1.0 | 1.00 | 1 | ▁▁▇▁▁ |
TBI_7K | 11876 | 0.00 | 4.00 | 5.66 | 0.0 | 2.00 | 4.0 | 6.00 | 8 | ▇▁▁▁▇ |
TBI_7L | 11876 | 0.00 | 4.00 | 5.66 | 0.0 | 2.00 | 4.0 | 6.00 | 8 | ▇▁▁▁▇ |
TBI_8G | 11876 | 0.00 | 0.00 | 0.00 | 0.0 | 0.00 | 0.0 | 0.00 | 0 | ▁▁▇▁▁ |
https://www.nature.com/articles/s41562-019-0609-3 https://github.com/anthonystevendick/bilingual_abcd/blob/master/bilingual_analysis.r accult_q1_y How well do you speak English?
1 = Poor; 2 = Fair; 3 = Good; 4 = Excellent accult_q2_y Besides English, do you speak or understand another language or dialect? If child asks about languages learned in school, the RA should state: That’s OK, as long as it is a language or dialect that you speak or understand.
1 = Poor Mal; 2 = Fair Regular; 3 = Good Bien; 4 = Excellent Excelente; 777 = Refused Niego contestar; 999 = Don’t Know No se
accult_q4_y What language do you speak with most of your friends?
1 = (Other language) all the time; 2 = (Other language) most of the time; 3 = (Other language) and English equally; 4 = English most of the time; 5 = English all the time
accult_q5_y What language do you speak with most of your family? 1 = (Other language) all the time; 2 = (Other language) most of the time; 3 = (Other language) and English equally; 4 = English most of the time; 5 = English all the time
bilingual <-as_tibble(read.csv(paste0(dataFold,"YACC01_DATA_TABLE.csv")))
#%>% filter(EVENTNAME =="baseline_year_1_arm_1")
#bilingual_status
# #recode the accult_q2_y variable into a binary "Bilingual Status", 0 = not bilingual; 1 = bilingual
#
# bilingual_status <- biLingual$ACCULT_Q2_Y
# sum(is.na(bilingual_status))
#bilingual_degree
# #dimension a 'bilingual degree' variable, where 1 = participant said they were bilingual, and they speak the other language with friends all the time, most of the time,
# #or equally, OR they speak the other language with family all the time, most of the time, or equally.
#
# bilingual_degree <- ifelse(bilingual_status == 0, 0, ifelse(bilingual_status == 1 & (as.numeric(accult_q4_y) <= 3 | as.numeric(accult_q5_y) <= 3), 1, NA))
# count(bilingual_degree) #check the data
# sum(is.na(bilingual_degree))
#### here I change it such that 0 = non-bilingual, 1 = bilingual who use (Other language) < English, 2 = bilingual who use (Other language) >= English
#bilingual_use
#
# #dimension a continuous 'bilingual use' variable, and reverse-score so that if participants speak the other language with friends all the time, most of the time...,
# #they will receive high scores on this measure (range 0-8, with 8 indicating a high-degree of other language use)
#
# bilingual_use<-10-(as.numeric(abcd_subset$accult_q4_y)+as.numeric(abcd_subset$accult_q5_y))
# sum(is.na(bilingual_use))
#### here I change it such that 0 = non-bilingual, 1 = bilingual who use (Other language) < English, 2 = bilingual who use (Other language) >= English
bilingualAdded <- bilingual %>%
mutate(bilingual_status = factor(ifelse(ACCULT_Q2_Y==777,NA,ACCULT_Q2_Y))) %>%
mutate(bilingual_degree = factor(ifelse(bilingual_status == 0, 0,
ifelse(bilingual_status == 1 & (as.numeric(ACCULT_Q4_Y) <= 3 | as.numeric(ACCULT_Q5_Y) <= 3), 1,
ifelse(bilingual_status == 1 & (as.numeric(ACCULT_Q4_Y) > 3 | as.numeric(ACCULT_Q5_Y) > 3), 2,NA))))) %>%
mutate(bilingual_use = ifelse(bilingual_status == 0, 0,
11-(as.numeric(ACCULT_Q4_Y)+as.numeric(ACCULT_Q5_Y))))
bilingualSum <- bilingualAdded %>%
select(SUBJECTKEY,EVENTNAME, starts_with("bilingual_"))
bilingualSum %>% filter(EVENTNAME =="baseline_year_1_arm_1") %>%
select(-SUBJECTKEY,-EVENTNAME) %>%
skimr::skim()
Name | Piped data |
Number of rows | 10920 |
Number of columns | 3 |
_______________________ | |
Column type frequency: | |
factor | 2 |
numeric | 1 |
________________________ | |
Group variables | None |
Variable type: factor
skim_variable | n_missing | complete_rate | ordered | n_unique | top_counts |
---|---|---|---|---|---|
bilingual_status | 74 | 0.99 | FALSE | 2 | 0: 6756, 1: 4090 |
bilingual_degree | 74 | 0.99 | FALSE | 3 | 0: 6756, 2: 2544, 1: 1546 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
bilingual_use | 74 | 0.99 | 1.02 | 1.69 | 0 | 0 | 0 | 1 | 9 | ▇▂▁▁▁ |
From Zhang et al. Translational Psychiatry (2020) https://doi.org/10.1038/s41398-020-0761-6 The “Safety from Crime” items from the PhenX Toolkit was used to assess neighborhood safety and crime reports. Additionally, children reported their schoolrisk and protective factors via a 12-item Inventory for School Risk and Protective Factors of the PhenX toolkit.
from parents and children
NeighboSafety_parent <-as_tibble(read.csv(paste0(dataFold,"ABCD_PNSC01_DATA_TABLE.csv"))) %>%
mutate(neighbo_safety_parent_sum = rowSums(select(.,starts_with("NEIGHBORHOOD")),na.rm=F)) %>%
select(SUBJECTKEY,EVENTNAME, neighbo_safety_parent_sum)
# I feel safe walking in my neighborhood, day or night. Me siento seguro(a) caminando por mi vecindario, de día o de noche.
# Violence is not a problem in my neighborhood./ La violencia no es un problema en mi vecindario.
# My neighborhood is safe from crime. Mi vecindario est√° a salvo de la delincuencia.
#1 = Strongly Disagree /Muy en desacuerdo; 2 = Disagree /En desacuerdo; 3 = Neutral (neither agree nor disagree)/ Neutral (ni de acuerdo ni en desacuerdo); 4 = Agree /De acuerdo; 5 = Strongly Agree/ Muy de acuerdo//The following questions are about your neighborhood. Your neighborhood is the area within about a 20-minute walk (or about a mile) from your home. For each of the statements please indicate whether you strongly agree, agree, neither agree nor disagree, disagree, or strongly disagree
NeighboSafety_children<-as_tibble(read.csv(paste0(dataFold,"ABCD_NSC01_DATA_TABLE.csv"))) %>%
rename(neighbo_safety_child_sum = NEIGHBORHOOD_CRIME_Y) %>%
select(SUBJECTKEY,EVENTNAME, neighbo_safety_child_sum)
#My neighborhood is safe from crime.
NeighboSafety <- plyr::join_all(list(NeighboSafety_parent, NeighboSafety_children), by=c('SUBJECTKEY','EVENTNAME'), type='full')
NeighboSafety %>% filter(EVENTNAME =="baseline_year_1_arm_1") %>%
skimr::skim()
Name | Piped data |
Number of rows | 11878 |
Number of columns | 4 |
_______________________ | |
Column type frequency: | |
character | 2 |
numeric | 2 |
________________________ | |
Group variables | None |
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
SUBJECTKEY | 0 | 1 | 12 | 16 | 0 | 11878 | 0 |
EVENTNAME | 0 | 1 | 21 | 21 | 0 | 1 | 0 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
neighbo_safety_parent_sum | 47 | 1 | 11.67 | 2.93 | 3 | 10 | 12 | 14 | 15 | ▁▁▃▆▇ |
neighbo_safety_child_sum | 24 | 1 | 4.03 | 1.09 | 1 | 3 | 4 | 5 | 5 | ▁▁▃▆▇ |
SchRisk <-as_tibble(read.csv(paste0(dataFold,"SRPF01_DATA_TABLE.csv"))) %>%
rename(EVENTNAME = VISIT)
school_risk_sum <- SchRisk %>%
mutate(sumSchool_environment = rowSums(dplyr::select(., "SCHOOL_2_Y", "SCHOOL_3_Y", "SCHOOL_4_Y", "SCHOOL_5_Y", "SCHOOL_6_Y", "SCHOOL_7_Y"))) %>%
mutate(sumSchool_involvement = rowSums(dplyr::select(., "SCHOOL_8_Y", "SCHOOL_9_Y", "SCHOOL_10_Y", "SCHOOL_12_Y"))) %>%
mutate(sumSchool_disengagement = rowSums(dplyr::select(., "SCHOOL_15_Y", "SCHOOL_17_Y"))) %>%
select(SUBJECTKEY,EVENTNAME, starts_with("sumSchool"))
school_risk_sum %>% filter(EVENTNAME =="baseline_year_1_arm_1") %>%
skimr::skim()
Name | Piped data |
Number of rows | 11878 |
Number of columns | 5 |
_______________________ | |
Column type frequency: | |
character | 2 |
numeric | 3 |
________________________ | |
Group variables | None |
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
SUBJECTKEY | 0 | 1 | 12 | 16 | 0 | 11878 | 0 |
EVENTNAME | 0 | 1 | 21 | 21 | 0 | 1 | 0 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
sumSchool_environment | 27 | 1 | 19.93 | 2.83 | 6 | 18 | 20 | 22 | 24 | ▁▁▂▇▇ |
sumSchool_involvement | 26 | 1 | 13.06 | 2.37 | 4 | 12 | 13 | 15 | 16 | ▁▁▃▅▇ |
sumSchool_disengagement | 25 | 1 | 3.74 | 1.46 | 2 | 3 | 4 | 5 | 8 | ▇▃▃▁▁ |
multiplying hours x days x 4 weeks x months x years /24 to get days this method leads to high zeros. this might be because of the 999 -> 0??
sport_act <-as_tibble(read.csv(paste0(dataFold,"ABCD_SPACSS01_DATA_TABLE.csv")))
sport_act_multiplied_sum <- sport_act %>%
# change 999 to 0. don't know seems to infer that the child doesn't do that activiy
mutate_at(vars(starts_with("SAI_SS_")), ~ replace(., which(.==999), 0)) %>%
# 0 = 0; 1 = 1; 2 = 2; 3 = 3; 4 = 4; 5 = 5; 6 = 6; 7 = 7; 8 = Once every 2 weeks; 9 = One day every month; 10 = Less than one day per month/; 999 = Don't know | When ballet/dance was not endorsed, values for the follow-up questions are missing. Here, missing values for the "... how many...?" follow-up questions have been replaced with "0".
#change this so that 0 = nothing, .125 = Less than one day per month, .25 = One day every month, .5 =Once every 2 weeks, 1 = 1 day per week and so on
mutate_at(.vars = vars(ends_with("_PERWK_P")),
.funs = funs(case_when(. == 10 ~ .125,
. == 9 ~ .25,
. == 8 ~ .5,
TRUE ~ as.numeric(.)))) %>%
# mutate_at(.vars = vars(ends_with("_PERWK_P")),
# .funs = funs(case_when(. == 10 ~ 1,
# . == 9 ~ 2,
# . == 8 ~ 3,
# . == 1 ~ 4,
# . == 2 ~ 5,
# . == 3 ~ 6,
# . == 4 ~ 7,
# . == 5 ~ 8,
# . == 6 ~ 9,
# . == 7 ~ 10,
# TRUE ~ as.numeric(.)))) %>%
#0 = 0; 1 = less than 30 minutes; 2 = 30; 3 = 45; 4 = 60 (1 hr); 5 = 90 (1.5 hrs); 6 = 120 (2 hrs); 7 = 150 (2.5 hrs); 8 = 180 (3 hrs); 9 = greater than 3 hours; 999 = Don't know | When ballet/dance was not endorsed, values for the follow-up questions are missing. Here, missing values for the "... how many...?" follow-up questions have been replaced with "0".
#change to hours unit. assumes less than 30 minutes to be .25 hour(15 mins) and > 3 hrs to be 4 hours
mutate_at(.vars = vars(ends_with("_TSPENT_P")),
.funs = funs(case_when(. == 1 ~ .25,
. == 2 ~ .5,
. == 3 ~ .75,
. == 4 ~ 1,
. == 5 ~ 1.5,
. == 6 ~ 2,
. == 7 ~ 2.5,
. == 8 ~ 3,
. == 9 ~ 4,
TRUE ~ as.numeric(.)))) %>%
#hours x days x 4 weeks x months x years /24 to get days
mutate(dance_days = SAI_SS_DANCE_TSPENT_P*SAI_SS_DANCE_PERWK_P*4*SAI_SS_DANCE_NMONTH_P*SAI_SS_DANCE_NYR_P/24) %>%
mutate(base_days = SAI_SS_BASE_TSPENT_P*SAI_SS_BASE_PERWK_P*4*SAI_SS_BASE_NMONTH_P*SAI_SS_BASE_NYR_P/24) %>%
mutate(basket_days = SAI_SS_BASKET_TSPENT_P*SAI_SS_BASKET_PERWK_P*4*SAI_SS_BASKET_NMONTH_P*SAI_SS_BASKET_NYR_P/24) %>%
mutate(climb_days = SAI_SS_CLIMB_TSPENT_P*SAI_SS_CLIMB_PERWK_P*4*SAI_SS_CLIMB_NMONTH_P*SAI_SS_CLIMB_NYR_P/24) %>%
mutate(fball_days = SAI_SS_FBALL_TSPENT_P*SAI_SS_FBALL_PERWK_P*4*SAI_SS_FBALL_NMONTH_P*SAI_SS_FBALL_NYR_P/24) %>%
mutate(fhock_days = SAI_SS_FHOCK_TSPENT_P*SAI_SS_FHOCK_PERWK_P*4*SAI_SS_FHOCK_NMONTH_P*SAI_SS_FHOCK_NYR_P/24) %>%
mutate(gym_days = SAI_SS_GYM_TSPENT_P*SAI_SS_GYM_PERWK_P*4*SAI_SS_GYM_NMONTH_P*SAI_SS_GYM_NYR_P/24) %>%
mutate(ihock_days = SAI_SS_IHOCK_TSPENT_P*SAI_SS_IHOCK_PERWK_P*4*SAI_SS_IHOCK_NMONTH_P*SAI_SS_IHOCK_NYR_P/24) %>%
mutate(polo_days = SAI_SS_POLO_TSPENT_P*SAI_SS_POLO_PERWK_P*4*SAI_SS_POLO_NMONTH_P*SAI_SS_POLO_NYR_P/24) %>%
mutate(iskate_days = SAI_SS_ISKATE_TSPENT_P*SAI_SS_ISKATE_PERWK_P*4*SAI_SS_ISKATE_NMONTH_P*SAI_SS_ISKATE_NYR_P/24) %>%
mutate(m_arts_days = SAI_SS_M_ARTS_TSPENT_P*SAI_SS_M_ARTS_PERWK_P*4*SAI_SS_M_ARTS_NMONTH_P*SAI_SS_M_ARTS_NYR_P/24) %>%
mutate(lax_days = SAI_SS_LAX_TSPENT_P*SAI_SS_LAX_PERWK_P*4*SAI_SS_LAX_NMONTH_P*SAI_SS_LAX_NYR_P/24) %>%
mutate(rugby_days = SAI_SS_RUGBY_TSPENT_P*SAI_SS_RUGBY_PERWK_P*4*SAI_SS_RUGBY_NMONTH_P*SAI_SS_RUGBY_NYR_P/24) %>%
mutate(skate_days = SAI_SS_SKATE_TSPENT_P*SAI_SS_SKATE_PERWK_P*4*SAI_SS_SKATE_NMONTH_P*SAI_SS_SKATE_NYR_P/24) %>%
mutate(sboard_days = SAI_SS_SBOARD_TSPENT_P*SAI_SS_SBOARD_PERWK_P*4*SAI_SS_SBOARD_NMONTH_P*SAI_SS_SBOARD_NYR_P/24) %>%
mutate(soc_days = SAI_SS_SOC_TSPENT_P*SAI_SS_SOC_PERWK_P*4*SAI_SS_SOC_NMONTH_P*SAI_SS_SOC_NYR_P/24) %>%
mutate(surf_days = SAI_SS_SURF_TSPENT_P*SAI_SS_SURF_PERWK_P*4*SAI_SS_SURF_NMONTH_P*SAI_SS_SURF_NYR_P/24) %>%
mutate(wpolo_days = SAI_SS_WPOLO_TSPENT_P*SAI_SS_WPOLO_PERWK_P*4*SAI_SS_WPOLO_NMONTH_P*SAI_SS_WPOLO_NYR_P/24) %>%
mutate(tennis_days = SAI_SS_TENNIS_TSPENT_P*SAI_SS_TENNIS_PERWK_P*4*SAI_SS_TENNIS_NMONTH_P*SAI_SS_TENNIS_NYR_P/24) %>%
mutate(run_days = SAI_SS_RUN_TSPENT_P*SAI_SS_RUN_PERWK_P*4*SAI_SS_RUN_NMONTH_P*SAI_SS_RUN_NYR_P/24) %>%
mutate(mma_days = SAI_SS_MMA_TSPENT_P*SAI_SS_MMA_PERWK_P*4*SAI_SS_MMA_NMONTH_P*SAI_SS_MMA_NYR_P/24) %>%
mutate(vball_days = SAI_SS_VBALL_TSPENT_P*SAI_SS_VBALL_PERWK_P*4*SAI_SS_VBALL_NMONTH_P*SAI_SS_VBALL_NYR_P/24) %>%
mutate(yoga_days = SAI_SS_YOGA_TSPENT_P*SAI_SS_YOGA_PERWK_P*4*SAI_SS_YOGA_NMONTH_P*SAI_SS_YOGA_NYR_P/24) %>%
mutate(music_days = SAI_SS_MUSIC_TSPENT_P*SAI_SS_MUSIC_PERWK_P*4*SAI_SS_MUSIC_NMONTH_P*SAI_SS_MUSIC_NYR_P/24) %>%
mutate(art_days = SAI_SS_ART_TSPENT_P*SAI_SS_ART_PERWK_P*4*SAI_SS_ART_NMONTH_P*SAI_SS_ART_NYR_P/24) %>%
mutate(drama_days = SAI_SS_DRAMA_TSPENT_P*SAI_SS_DRAMA_PERWK_P*4*SAI_SS_DRAMA_NMONTH_P*SAI_SS_DRAMA_NYR_P/24) %>%
mutate(craft_days = SAI_SS_CRAFTS_TSPENT_P*SAI_SS_CRAFTS_PERWK_P*4*SAI_SS_CRAFTS_NMONTH_P*SAI_SS_CRAFTS_NYR_P/24) %>%
mutate(chess_days = SAI_SS_CHESS_TSPENT_P*SAI_SS_CHESS_PERWK_P*4*SAI_SS_CHESS_NMONTH_P*SAI_SS_CHESS_NYR_P/24) %>%
mutate(collect_days = SAI_SS_COLLECT_TSPENT_P*SAI_SS_COLLECT_PERWK_P*4*SAI_SS_COLLECT_NMONTH_P*SAI_SS_COLLECT_NYR_P/24) %>%
# didn't include listening to music or reading since they are in the different scale
# summary based on kerlic's child dev paper
mutate(phys_ind_days_sum = sboard_days + climb_days + gym_days + iskate_days + m_arts_days + skate_days + dance_days + surf_days + tennis_days + run_days + mma_days + yoga_days) %>%
mutate(phys_team_days_sum = base_days + basket_days + fhock_days + fball_days + ihock_days + polo_days + lax_days + rugby_days + soc_days + wpolo_days +vball_days) %>%
mutate(art_days_sum = collect_days + music_days + art_days + drama_days + craft_days + chess_days) %>%
mutate(sport_act_all_days_sum = phys_ind_days_sum + phys_team_days_sum + art_days_sum) %>%
mutate(phys_ind_daypweek_sum = SAI_SS_SBOARD_PERWK_P + SAI_SS_CLIMB_PERWK_P + SAI_SS_GYM_PERWK_P + SAI_SS_ISKATE_PERWK_P + SAI_SS_M_ARTS_PERWK_P + SAI_SS_SKATE_PERWK_P + SAI_SS_DANCE_PERWK_P + SAI_SS_SURF_PERWK_P + SAI_SS_TENNIS_PERWK_P + SAI_SS_RUN_PERWK_P + SAI_SS_MMA_PERWK_P + SAI_SS_YOGA_PERWK_P) %>%
mutate(phys_team_daypweek_sum = SAI_SS_BASE_PERWK_P + SAI_SS_BASKET_PERWK_P + SAI_SS_FHOCK_PERWK_P + SAI_SS_FBALL_PERWK_P + SAI_SS_IHOCK_PERWK_P + SAI_SS_POLO_PERWK_P + SAI_SS_LAX_PERWK_P + SAI_SS_RUGBY_PERWK_P + SAI_SS_SOC_PERWK_P + SAI_SS_WPOLO_PERWK_P +SAI_SS_VBALL_PERWK_P) %>%
mutate(art_daypweek_sum = SAI_SS_COLLECT_PERWK_P + SAI_SS_MUSIC_PERWK_P + SAI_SS_ART_PERWK_P + SAI_SS_DRAMA_PERWK_P + SAI_SS_CRAFTS_PERWK_P + SAI_SS_CHESS_PERWK_P) %>%
mutate(sport_act_all_daypweek_sum = phys_ind_daypweek_sum + phys_team_daypweek_sum + art_daypweek_sum)
sport_act_multiplied_sum %>% filter(EVENTNAME =="baseline_year_1_arm_1") %>%
skimr::skim()
Name | Piped data |
Number of rows | 11878 |
Number of columns | 168 |
_______________________ | |
Column type frequency: | |
character | 6 |
numeric | 162 |
________________________ | |
Group variables | None |
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
SUBJECTKEY | 0 | 1 | 12 | 16 | 0 | 11878 | 0 |
SRC_SUBJECT_ID | 0 | 1 | 16 | 16 | 0 | 11878 | 0 |
INTERVIEW_DATE | 0 | 1 | 9 | 9 | 0 | 756 | 0 |
SEX | 0 | 1 | 1 | 1 | 0 | 2 | 0 |
EVENTNAME | 0 | 1 | 21 | 21 | 0 | 1 | 0 |
STUDY_COHORT_NAME | 0 | 1 | 21 | 21 | 0 | 1 | 0 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
ABCD_SPACSS01_ID | 0 | 1.00 | 22337.50 | 3429.03 | 16399 | 19368.25 | 22337.50 | 25306.75 | 28276.00 | ▇▇▇▇▇ |
DATASET_ID | 0 | 1.00 | 34516.00 | 0.00 | 34516 | 34516.00 | 34516.00 | 34516.00 | 34516.00 | ▁▁▇▁▁ |
INTERVIEW_AGE | 0 | 1.00 | 118.98 | 7.50 | 107 | 112.00 | 119.00 | 126.00 | 133.00 | ▇▆▆▆▆ |
SAI_SS_DANCE_NYR_P | 24 | 1.00 | 0.64 | 1.44 | 0 | 0.00 | 0.00 | 0.00 | 10.00 | ▇▁▁▁▁ |
SAI_SS_DANCE_NMONTH_P | 26 | 1.00 | 1.93 | 3.68 | 0 | 0.00 | 0.00 | 0.00 | 12.00 | ▇▁▁▁▁ |
SAI_SS_DANCE_PERWK_P | 20 | 1.00 | 0.42 | 0.89 | 0 | 0.00 | 0.00 | 0.25 | 7.00 | ▇▁▁▁▁ |
SAI_SS_DANCE_TSPENT_P | 30 | 1.00 | 0.26 | 0.51 | 0 | 0.00 | 0.00 | 0.00 | 4.00 | ▇▂▁▁▁ |
SAI_SS_BASE_NYR_P | 17 | 1.00 | 0.74 | 1.50 | 0 | 0.00 | 0.00 | 1.00 | 10.00 | ▇▁▁▁▁ |
SAI_SS_BASE_NMONTH_P | 23 | 1.00 | 1.14 | 2.16 | 0 | 0.00 | 0.00 | 2.00 | 12.00 | ▇▂▁▁▁ |
SAI_SS_BASE_PERWK_P | 23 | 1.00 | 0.71 | 1.26 | 0 | 0.00 | 0.00 | 2.00 | 7.00 | ▇▁▂▁▁ |
SAI_SS_BASE_TSPENT_P | 27 | 1.00 | 0.37 | 0.66 | 0 | 0.00 | 0.00 | 1.00 | 4.00 | ▇▂▁▁▁ |
SAI_SS_BASKET_NYR_P | 21 | 1.00 | 0.59 | 1.23 | 0 | 0.00 | 0.00 | 1.00 | 10.00 | ▇▁▁▁▁ |
SAI_SS_BASKET_NMONTH_P | 25 | 1.00 | 1.07 | 2.14 | 0 | 0.00 | 0.00 | 1.00 | 12.00 | ▇▂▁▁▁ |
SAI_SS_BASKET_PERWK_P | 26 | 1.00 | 0.62 | 1.17 | 0 | 0.00 | 0.00 | 1.00 | 7.00 | ▇▂▁▁▁ |
SAI_SS_BASKET_TSPENT_P | 50 | 1.00 | 0.29 | 0.54 | 0 | 0.00 | 0.00 | 0.50 | 4.00 | ▇▂▁▁▁ |
SAI_SS_CLIMB_NYR_P | 15 | 1.00 | 0.08 | 0.53 | 0 | 0.00 | 0.00 | 0.00 | 10.00 | ▇▁▁▁▁ |
SAI_SS_CLIMB_NMONTH_P | 14 | 1.00 | 0.16 | 1.09 | 0 | 0.00 | 0.00 | 0.00 | 12.00 | ▇▁▁▁▁ |
SAI_SS_CLIMB_PERWK_P | 19 | 1.00 | 0.06 | 0.40 | 0 | 0.00 | 0.00 | 0.00 | 7.00 | ▇▁▁▁▁ |
SAI_SS_CLIMB_TSPENT_P | 19 | 1.00 | 0.04 | 0.24 | 0 | 0.00 | 0.00 | 0.00 | 4.00 | ▇▁▁▁▁ |
SAI_SS_FHOCK_NYR_P | 10 | 1.00 | 0.01 | 0.18 | 0 | 0.00 | 0.00 | 0.00 | 7.00 | ▇▁▁▁▁ |
SAI_SS_FHOCK_NMONTH_P | 11 | 1.00 | 0.02 | 0.34 | 0 | 0.00 | 0.00 | 0.00 | 12.00 | ▇▁▁▁▁ |
SAI_SS_FHOCK_PERWK_P | 10 | 1.00 | 0.01 | 0.18 | 0 | 0.00 | 0.00 | 0.00 | 5.00 | ▇▁▁▁▁ |
SAI_SS_FHOCK_TSPENT_P | 10 | 1.00 | 0.01 | 0.10 | 0 | 0.00 | 0.00 | 0.00 | 3.00 | ▇▁▁▁▁ |
SAI_SS_FBALL_NYR_P | 18 | 1.00 | 0.25 | 0.86 | 0 | 0.00 | 0.00 | 0.00 | 10.00 | ▇▁▁▁▁ |
SAI_SS_FBALL_NMONTH_P | 21 | 1.00 | 0.44 | 1.42 | 0 | 0.00 | 0.00 | 0.00 | 12.00 | ▇▁▁▁▁ |
SAI_SS_FBALL_PERWK_P | 20 | 1.00 | 0.35 | 1.10 | 0 | 0.00 | 0.00 | 0.00 | 7.00 | ▇▁▁▁▁ |
SAI_SS_FBALL_TSPENT_P | 24 | 1.00 | 0.17 | 0.51 | 0 | 0.00 | 0.00 | 0.00 | 4.00 | ▇▁▁▁▁ |
SAI_SS_GYM_NYR_P | 15 | 1.00 | 0.49 | 1.16 | 0 | 0.00 | 0.00 | 0.00 | 9.00 | ▇▁▁▁▁ |
SAI_SS_GYM_NMONTH_P | 19 | 1.00 | 1.71 | 3.59 | 0 | 0.00 | 0.00 | 0.00 | 12.00 | ▇▁▁▁▁ |
SAI_SS_GYM_PERWK_P | 21 | 1.00 | 0.33 | 0.77 | 0 | 0.00 | 0.00 | 0.00 | 7.00 | ▇▁▁▁▁ |
SAI_SS_GYM_TSPENT_P | 31 | 1.00 | 0.26 | 0.56 | 0 | 0.00 | 0.00 | 0.00 | 4.00 | ▇▂▁▁▁ |
SAI_SS_IHOCK_NYR_P | 10 | 1.00 | 0.08 | 0.56 | 0 | 0.00 | 0.00 | 0.00 | 9.00 | ▇▁▁▁▁ |
SAI_SS_IHOCK_NMONTH_P | 13 | 1.00 | 0.14 | 1.00 | 0 | 0.00 | 0.00 | 0.00 | 12.00 | ▇▁▁▁▁ |
SAI_SS_IHOCK_PERWK_P | 10 | 1.00 | 0.07 | 0.48 | 0 | 0.00 | 0.00 | 0.00 | 6.00 | ▇▁▁▁▁ |
SAI_SS_IHOCK_TSPENT_P | 11 | 1.00 | 0.03 | 0.20 | 0 | 0.00 | 0.00 | 0.00 | 4.00 | ▇▁▁▁▁ |
SAI_SS_POLO_NYR_P | 11 | 1.00 | 0.08 | 0.52 | 0 | 0.00 | 0.00 | 0.00 | 10.00 | ▇▁▁▁▁ |
SAI_SS_POLO_NMONTH_P | 14 | 1.00 | 0.22 | 1.38 | 0 | 0.00 | 0.00 | 0.00 | 12.00 | ▇▁▁▁▁ |
SAI_SS_POLO_PERWK_P | 14 | 1.00 | 0.05 | 0.36 | 0 | 0.00 | 0.00 | 0.00 | 7.00 | ▇▁▁▁▁ |
SAI_SS_POLO_TSPENT_P | 17 | 1.00 | 0.04 | 0.25 | 0 | 0.00 | 0.00 | 0.00 | 4.00 | ▇▁▁▁▁ |
SAI_SS_ISKATE_NYR_P | 11 | 1.00 | 0.13 | 0.64 | 0 | 0.00 | 0.00 | 0.00 | 9.00 | ▇▁▁▁▁ |
SAI_SS_ISKATE_NMONTH_P | 16 | 1.00 | 0.27 | 1.38 | 0 | 0.00 | 0.00 | 0.00 | 12.00 | ▇▁▁▁▁ |
SAI_SS_ISKATE_PERWK_P | 18 | 1.00 | 0.08 | 0.40 | 0 | 0.00 | 0.00 | 0.00 | 7.00 | ▇▁▁▁▁ |
SAI_SS_ISKATE_TSPENT_P | 19 | 1.00 | 0.06 | 0.26 | 0 | 0.00 | 0.00 | 0.00 | 4.00 | ▇▁▁▁▁ |
SAI_SS_M_ARTS_NYR_P | 16 | 1.00 | 0.36 | 0.97 | 0 | 0.00 | 0.00 | 0.00 | 10.00 | ▇▁▁▁▁ |
SAI_SS_M_ARTS_NMONTH_P | 23 | 1.00 | 1.49 | 3.62 | 0 | 0.00 | 0.00 | 0.00 | 12.00 | ▇▁▁▁▁ |
SAI_SS_M_ARTS_PERWK_P | 19 | 1.00 | 0.36 | 0.91 | 0 | 0.00 | 0.00 | 0.00 | 7.00 | ▇▁▁▁▁ |
SAI_SS_M_ARTS_TSPENT_P | 25 | 1.00 | 0.17 | 0.40 | 0 | 0.00 | 0.00 | 0.00 | 4.00 | ▇▁▁▁▁ |
SAI_SS_LAX_NYR_P | 10 | 1.00 | 0.06 | 0.41 | 0 | 0.00 | 0.00 | 0.00 | 8.00 | ▇▁▁▁▁ |
SAI_SS_LAX_NMONTH_P | 12 | 1.00 | 0.11 | 0.76 | 0 | 0.00 | 0.00 | 0.00 | 12.00 | ▇▁▁▁▁ |
SAI_SS_LAX_PERWK_P | 15 | 1.00 | 0.07 | 0.42 | 0 | 0.00 | 0.00 | 0.00 | 5.00 | ▇▁▁▁▁ |
SAI_SS_LAX_TSPENT_P | 13 | 1.00 | 0.04 | 0.23 | 0 | 0.00 | 0.00 | 0.00 | 4.00 | ▇▁▁▁▁ |
SAI_SS_RUGBY_NYR_P | 10 | 1.00 | 0.01 | 0.14 | 0 | 0.00 | 0.00 | 0.00 | 7.00 | ▇▁▁▁▁ |
SAI_SS_RUGBY_NMONTH_P | 10 | 1.00 | 0.01 | 0.28 | 0 | 0.00 | 0.00 | 0.00 | 12.00 | ▇▁▁▁▁ |
SAI_SS_RUGBY_PERWK_P | 10 | 1.00 | 0.01 | 0.15 | 0 | 0.00 | 0.00 | 0.00 | 7.00 | ▇▁▁▁▁ |
SAI_SS_RUGBY_TSPENT_P | 10 | 1.00 | 0.00 | 0.09 | 0 | 0.00 | 0.00 | 0.00 | 4.00 | ▇▁▁▁▁ |
SAI_SS_SKATE_NYR_P | 13 | 1.00 | 0.09 | 0.56 | 0 | 0.00 | 0.00 | 0.00 | 10.00 | ▇▁▁▁▁ |
SAI_SS_SKATE_NMONTH_P | 17 | 1.00 | 0.22 | 1.33 | 0 | 0.00 | 0.00 | 0.00 | 12.00 | ▇▁▁▁▁ |
SAI_SS_SKATE_PERWK_P | 14 | 1.00 | 0.10 | 0.62 | 0 | 0.00 | 0.00 | 0.00 | 7.00 | ▇▁▁▁▁ |
SAI_SS_SKATE_TSPENT_P | 18 | 1.00 | 0.03 | 0.20 | 0 | 0.00 | 0.00 | 0.00 | 4.00 | ▇▁▁▁▁ |
SAI_SS_SBOARD_NYR_P | 10 | 1.00 | 0.33 | 1.25 | 0 | 0.00 | 0.00 | 0.00 | 10.00 | ▇▁▁▁▁ |
SAI_SS_SBOARD_NMONTH_P | 20 | 1.00 | 0.27 | 0.99 | 0 | 0.00 | 0.00 | 0.00 | 12.00 | ▇▁▁▁▁ |
SAI_SS_SBOARD_PERWK_P | 12 | 1.00 | 0.10 | 0.42 | 0 | 0.00 | 0.00 | 0.00 | 7.00 | ▇▁▁▁▁ |
SAI_SS_SBOARD_TSPENT_P | 16 | 1.00 | 0.25 | 0.90 | 0 | 0.00 | 0.00 | 0.00 | 4.00 | ▇▁▁▁▁ |
SAI_SS_SOC_NYR_P | 31 | 1.00 | 1.21 | 1.85 | 0 | 0.00 | 0.00 | 2.00 | 10.00 | ▇▁▁▁▁ |
SAI_SS_SOC_NMONTH_P | 44 | 1.00 | 2.04 | 3.05 | 0 | 0.00 | 0.00 | 4.00 | 12.00 | ▇▂▁▁▁ |
SAI_SS_SOC_PERWK_P | 38 | 1.00 | 0.95 | 1.27 | 0 | 0.00 | 0.00 | 2.00 | 7.00 | ▇▂▂▁▁ |
SAI_SS_SOC_TSPENT_P | 58 | 1.00 | 0.47 | 0.62 | 0 | 0.00 | 0.00 | 1.00 | 4.00 | ▇▅▁▁▁ |
SAI_SS_SURF_NYR_P | 10 | 1.00 | 0.01 | 0.21 | 0 | 0.00 | 0.00 | 0.00 | 9.00 | ▇▁▁▁▁ |
SAI_SS_SURF_NMONTH_P | 12 | 1.00 | 0.02 | 0.31 | 0 | 0.00 | 0.00 | 0.00 | 12.00 | ▇▁▁▁▁ |
SAI_SS_SURF_PERWK_P | 10 | 1.00 | 0.01 | 0.18 | 0 | 0.00 | 0.00 | 0.00 | 5.00 | ▇▁▁▁▁ |
SAI_SS_SURF_TSPENT_P | 11 | 1.00 | 0.01 | 0.15 | 0 | 0.00 | 0.00 | 0.00 | 4.00 | ▇▁▁▁▁ |
SAI_SS_WPOLO_NYR_P | 22 | 1.00 | 1.16 | 2.14 | 0 | 0.00 | 0.00 | 2.00 | 10.00 | ▇▁▁▁▁ |
SAI_SS_WPOLO_NMONTH_P | 42 | 1.00 | 1.76 | 3.24 | 0 | 0.00 | 0.00 | 3.00 | 12.00 | ▇▁▁▁▁ |
SAI_SS_WPOLO_PERWK_P | 35 | 1.00 | 0.78 | 1.43 | 0 | 0.00 | 0.00 | 1.00 | 7.00 | ▇▁▁▁▁ |
SAI_SS_WPOLO_TSPENT_P | 47 | 1.00 | 0.31 | 0.56 | 0 | 0.00 | 0.00 | 0.50 | 4.00 | ▇▂▁▁▁ |
SAI_SS_TENNIS_NYR_P | 15 | 1.00 | 0.14 | 0.63 | 0 | 0.00 | 0.00 | 0.00 | 10.00 | ▇▁▁▁▁ |
SAI_SS_TENNIS_NMONTH_P | 17 | 1.00 | 0.31 | 1.46 | 0 | 0.00 | 0.00 | 0.00 | 12.00 | ▇▁▁▁▁ |
SAI_SS_TENNIS_PERWK_P | 19 | 1.00 | 0.12 | 0.54 | 0 | 0.00 | 0.00 | 0.00 | 7.00 | ▇▁▁▁▁ |
SAI_SS_TENNIS_TSPENT_P | 21 | 1.00 | 0.07 | 0.29 | 0 | 0.00 | 0.00 | 0.00 | 4.00 | ▇▁▁▁▁ |
SAI_SS_RUN_NYR_P | 18 | 1.00 | 0.14 | 0.62 | 0 | 0.00 | 0.00 | 0.00 | 9.00 | ▇▁▁▁▁ |
SAI_SS_RUN_NMONTH_P | 20 | 1.00 | 0.29 | 1.27 | 0 | 0.00 | 0.00 | 0.00 | 12.00 | ▇▁▁▁▁ |
SAI_SS_RUN_PERWK_P | 24 | 1.00 | 0.16 | 0.68 | 0 | 0.00 | 0.00 | 0.00 | 7.00 | ▇▁▁▁▁ |
SAI_SS_RUN_TSPENT_P | 20 | 1.00 | 0.08 | 0.31 | 0 | 0.00 | 0.00 | 0.00 | 4.00 | ▇▁▁▁▁ |
SAI_SS_MMA_NYR_P | 16 | 1.00 | 0.06 | 0.45 | 0 | 0.00 | 0.00 | 0.00 | 7.00 | ▇▁▁▁▁ |
SAI_SS_MMA_NMONTH_P | 20 | 1.00 | 0.17 | 1.16 | 0 | 0.00 | 0.00 | 0.00 | 12.00 | ▇▁▁▁▁ |
SAI_SS_MMA_PERWK_P | 16 | 1.00 | 0.08 | 0.49 | 0 | 0.00 | 0.00 | 0.00 | 7.00 | ▇▁▁▁▁ |
SAI_SS_MMA_TSPENT_P | 20 | 1.00 | 0.04 | 0.24 | 0 | 0.00 | 0.00 | 0.00 | 4.00 | ▇▁▁▁▁ |
SAI_SS_VBALL_NYR_P | 13 | 1.00 | 0.04 | 0.27 | 0 | 0.00 | 0.00 | 0.00 | 7.00 | ▇▁▁▁▁ |
SAI_SS_VBALL_NMONTH_P | 15 | 1.00 | 0.09 | 0.66 | 0 | 0.00 | 0.00 | 0.00 | 12.00 | ▇▁▁▁▁ |
SAI_SS_VBALL_PERWK_P | 17 | 1.00 | 0.05 | 0.36 | 0 | 0.00 | 0.00 | 0.00 | 6.00 | ▇▁▁▁▁ |
SAI_SS_VBALL_TSPENT_P | 14 | 1.00 | 0.03 | 0.20 | 0 | 0.00 | 0.00 | 0.00 | 3.00 | ▇▁▁▁▁ |
SAI_SS_YOGA_NYR_P | 13 | 1.00 | 0.04 | 0.37 | 0 | 0.00 | 0.00 | 0.00 | 10.00 | ▇▁▁▁▁ |
SAI_SS_YOGA_NMONTH_P | 13 | 1.00 | 0.12 | 0.96 | 0 | 0.00 | 0.00 | 0.00 | 12.00 | ▇▁▁▁▁ |
SAI_SS_YOGA_PERWK_P | 14 | 1.00 | 0.03 | 0.30 | 0 | 0.00 | 0.00 | 0.00 | 7.00 | ▇▁▁▁▁ |
SAI_SS_YOGA_TSPENT_P | 16 | 1.00 | 0.02 | 0.12 | 0 | 0.00 | 0.00 | 0.00 | 3.00 | ▇▁▁▁▁ |
SAI_SS_MUSIC_NYR_P | 25 | 1.00 | 0.90 | 1.48 | 0 | 0.00 | 0.00 | 1.00 | 10.00 | ▇▁▁▁▁ |
SAI_SS_MUSIC_NMONTH_P | 39 | 1.00 | 3.38 | 4.65 | 0 | 0.00 | 0.00 | 8.00 | 12.00 | ▇▁▁▁▂ |
SAI_SS_MUSIC_PERWK_P | 32 | 1.00 | 0.84 | 1.44 | 0 | 0.00 | 0.00 | 1.00 | 7.00 | ▇▁▁▁▁ |
SAI_SS_MUSIC_TSPENT_P | 42 | 1.00 | 0.29 | 0.42 | 0 | 0.00 | 0.00 | 0.50 | 4.00 | ▇▁▁▁▁ |
SAI_SS_ART_NYR_P | 27 | 1.00 | 0.78 | 1.94 | 0 | 0.00 | 0.00 | 0.00 | 10.00 | ▇▁▁▁▁ |
SAI_SS_ART_NMONTH_P | 36 | 1.00 | 1.60 | 3.67 | 0 | 0.00 | 0.00 | 0.00 | 12.00 | ▇▁▁▁▁ |
SAI_SS_ART_PERWK_P | 41 | 1.00 | 0.54 | 1.39 | 0 | 0.00 | 0.00 | 0.00 | 7.00 | ▇▁▁▁▁ |
SAI_SS_ART_TSPENT_P | 38 | 1.00 | 0.18 | 0.45 | 0 | 0.00 | 0.00 | 0.00 | 4.00 | ▇▁▁▁▁ |
SAI_SS_DRAMA_NYR_P | 14 | 1.00 | 0.23 | 0.83 | 0 | 0.00 | 0.00 | 0.00 | 10.00 | ▇▁▁▁▁ |
SAI_SS_DRAMA_NMONTH_P | 29 | 1.00 | 0.53 | 1.83 | 0 | 0.00 | 0.00 | 0.00 | 12.00 | ▇▁▁▁▁ |
SAI_SS_DRAMA_PERWK_P | 27 | 1.00 | 0.24 | 0.83 | 0 | 0.00 | 0.00 | 0.00 | 7.00 | ▇▁▁▁▁ |
SAI_SS_DRAMA_TSPENT_P | 24 | 1.00 | 0.16 | 0.54 | 0 | 0.00 | 0.00 | 0.00 | 4.00 | ▇▁▁▁▁ |
SAI_SS_CRAFTS_NYR_P | 21 | 1.00 | 0.28 | 1.12 | 0 | 0.00 | 0.00 | 0.00 | 10.00 | ▇▁▁▁▁ |
SAI_SS_CRAFTS_NMONTH_P | 28 | 1.00 | 0.62 | 2.40 | 0 | 0.00 | 0.00 | 0.00 | 12.00 | ▇▁▁▁▁ |
SAI_SS_CRAFTS_PERWK_P | 27 | 1.00 | 0.21 | 0.85 | 0 | 0.00 | 0.00 | 0.00 | 7.00 | ▇▁▁▁▁ |
SAI_SS_CRAFTS_TSPENT_P | 27 | 1.00 | 0.08 | 0.30 | 0 | 0.00 | 0.00 | 0.00 | 4.00 | ▇▁▁▁▁ |
SAI_SS_CHESS_NYR_P | 22 | 1.00 | 0.27 | 0.96 | 0 | 0.00 | 0.00 | 0.00 | 10.00 | ▇▁▁▁▁ |
SAI_SS_CHESS_NMONTH_P | 28 | 1.00 | 0.70 | 2.36 | 0 | 0.00 | 0.00 | 0.00 | 12.00 | ▇▁▁▁▁ |
SAI_SS_CHESS_PERWK_P | 34 | 1.00 | 0.17 | 0.66 | 0 | 0.00 | 0.00 | 0.00 | 7.00 | ▇▁▁▁▁ |
SAI_SS_CHESS_TSPENT_P | 33 | 1.00 | 0.10 | 0.32 | 0 | 0.00 | 0.00 | 0.00 | 4.00 | ▇▁▁▁▁ |
SAI_SS_COLLECT_NYR_P | 17 | 1.00 | 0.21 | 0.93 | 0 | 0.00 | 0.00 | 0.00 | 10.00 | ▇▁▁▁▁ |
SAI_SS_COLLECT_NMONTH_P | 28 | 1.00 | 0.53 | 2.32 | 0 | 0.00 | 0.00 | 0.00 | 12.00 | ▇▁▁▁▁ |
SAI_SS_COLLECT_PERWK_P | 24 | 1.00 | 0.17 | 0.86 | 0 | 0.00 | 0.00 | 0.00 | 7.00 | ▇▁▁▁▁ |
SAI_SS_COLLECT_TSPENT_P | 23 | 1.00 | 0.04 | 0.20 | 0 | 0.00 | 0.00 | 0.00 | 4.00 | ▇▁▁▁▁ |
SAI_SS_LMUSIC_YEARS_P | 1220 | 0.90 | 3.84 | 3.22 | 0 | 1.00 | 3.00 | 6.00 | 10.00 | ▇▃▂▂▃ |
SAI_SS_LMUSIC_HOURS_P | 1697 | 0.86 | 4.64 | 7.59 | 0 | 1.00 | 3.00 | 6.00 | 168.00 | ▇▁▁▁▁ |
SAI_SS_READ_YEARS_P | 591 | 0.95 | 2.72 | 2.39 | 0 | 0.00 | 3.00 | 4.00 | 10.00 | ▇▅▃▁▁ |
SAI_SS_READ_HOURS_P | 831 | 0.93 | 4.62 | 9.22 | 0 | 0.00 | 3.00 | 6.00 | 168.00 | ▇▁▁▁▁ |
SPORTS_ACTIVITY_SS_LMUSIC_P | 2069 | 0.83 | 169.76 | 369.54 | 1 | 3.00 | 6.00 | 9.00 | 999.00 | ▇▁▁▁▂ |
SPORTS_ACTIVITY_SS_READ_P | 3310 | 0.72 | 91.01 | 278.58 | 1 | 4.00 | 6.00 | 8.00 | 999.00 | ▇▁▁▁▁ |
dance_days | 54 | 1.00 | 2.29 | 12.64 | 0 | 0.00 | 0.00 | 0.00 | 560.00 | ▇▁▁▁▁ |
base_days | 52 | 1.00 | 2.58 | 9.11 | 0 | 0.00 | 0.00 | 0.67 | 266.67 | ▇▁▁▁▁ |
basket_days | 74 | 0.99 | 1.42 | 5.58 | 0 | 0.00 | 0.00 | 0.00 | 147.00 | ▇▁▁▁▁ |
climb_days | 28 | 1.00 | 0.14 | 1.93 | 0 | 0.00 | 0.00 | 0.00 | 128.00 | ▇▁▁▁▁ |
fball_days | 35 | 1.00 | 1.02 | 6.11 | 0 | 0.00 | 0.00 | 0.00 | 245.00 | ▇▁▁▁▁ |
fhock_days | 11 | 1.00 | 0.02 | 0.67 | 0 | 0.00 | 0.00 | 0.00 | 55.00 | ▇▁▁▁▁ |
gym_days | 54 | 1.00 | 1.99 | 12.01 | 0 | 0.00 | 0.00 | 0.00 | 392.00 | ▇▁▁▁▁ |
ihock_days | 14 | 1.00 | 0.35 | 3.31 | 0 | 0.00 | 0.00 | 0.00 | 75.00 | ▇▁▁▁▁ |
polo_days | 23 | 1.00 | 0.17 | 2.54 | 0 | 0.00 | 0.00 | 0.00 | 135.00 | ▇▁▁▁▁ |
iskate_days | 28 | 1.00 | 0.21 | 2.14 | 0 | 0.00 | 0.00 | 0.00 | 108.00 | ▇▁▁▁▁ |
m_arts_days | 48 | 1.00 | 1.35 | 5.69 | 0 | 0.00 | 0.00 | 0.00 | 175.00 | ▇▁▁▁▁ |
lax_days | 18 | 1.00 | 0.16 | 1.68 | 0 | 0.00 | 0.00 | 0.00 | 60.00 | ▇▁▁▁▁ |
rugby_days | 10 | 1.00 | 0.02 | 0.53 | 0 | 0.00 | 0.00 | 0.00 | 26.67 | ▇▁▁▁▁ |
skate_days | 23 | 1.00 | 0.29 | 3.97 | 0 | 0.00 | 0.00 | 0.00 | 261.33 | ▇▁▁▁▁ |
sboard_days | 28 | 1.00 | 0.85 | 4.93 | 0 | 0.00 | 0.00 | 0.00 | 128.00 | ▇▁▁▁▁ |
soc_days | 107 | 0.99 | 3.83 | 10.12 | 0 | 0.00 | 0.00 | 3.00 | 196.00 | ▇▁▁▁▁ |
surf_days | 13 | 1.00 | 0.03 | 0.87 | 0 | 0.00 | 0.00 | 0.00 | 48.00 | ▇▁▁▁▁ |
wpolo_days | 90 | 0.99 | 2.97 | 10.38 | 0 | 0.00 | 0.00 | 1.25 | 256.00 | ▇▁▁▁▁ |
tennis_days | 31 | 1.00 | 0.31 | 4.56 | 0 | 0.00 | 0.00 | 0.00 | 420.00 | ▇▁▁▁▁ |
run_days | 36 | 1.00 | 0.30 | 2.29 | 0 | 0.00 | 0.00 | 0.00 | 96.00 | ▇▁▁▁▁ |
mma_days | 25 | 1.00 | 0.28 | 3.06 | 0 | 0.00 | 0.00 | 0.00 | 175.00 | ▇▁▁▁▁ |
vball_days | 20 | 1.00 | 0.06 | 0.73 | 0 | 0.00 | 0.00 | 0.00 | 44.00 | ▇▁▁▁▁ |
yoga_days | 17 | 1.00 | 0.07 | 1.05 | 0 | 0.00 | 0.00 | 0.00 | 48.00 | ▇▁▁▁▁ |
music_days | 82 | 0.99 | 2.34 | 7.09 | 0 | 0.00 | 0.00 | 1.67 | 224.00 | ▇▁▁▁▁ |
art_days | 70 | 0.99 | 3.68 | 17.62 | 0 | 0.00 | 0.00 | 0.00 | 504.00 | ▇▁▁▁▁ |
drama_days | 46 | 1.00 | 0.69 | 5.10 | 0 | 0.00 | 0.00 | 0.00 | 280.00 | ▇▁▁▁▁ |
craft_days | 43 | 1.00 | 1.11 | 8.54 | 0 | 0.00 | 0.00 | 0.00 | 280.00 | ▇▁▁▁▁ |
chess_days | 59 | 1.00 | 0.58 | 4.60 | 0 | 0.00 | 0.00 | 0.00 | 200.00 | ▇▁▁▁▁ |
collect_days | 39 | 1.00 | 0.62 | 7.08 | 0 | 0.00 | 0.00 | 0.00 | 448.00 | ▇▁▁▁▁ |
phys_ind_days_sum | 259 | 0.98 | 8.07 | 21.57 | 0 | 0.00 | 1.00 | 8.00 | 560.00 | ▇▁▁▁▁ |
phys_team_days_sum | 322 | 0.97 | 12.60 | 22.06 | 0 | 0.00 | 4.00 | 15.50 | 367.67 | ▇▁▁▁▁ |
art_days_sum | 263 | 0.98 | 8.85 | 26.38 | 0 | 0.00 | 0.33 | 6.00 | 600.00 | ▇▁▁▁▁ |
sport_act_all_days_sum | 735 | 0.94 | 29.34 | 43.86 | 0 | 3.33 | 15.33 | 38.00 | 826.17 | ▇▁▁▁▁ |
phys_ind_daypweek_sum | 93 | 0.99 | 1.84 | 2.42 | 0 | 0.00 | 1.00 | 3.00 | 44.75 | ▇▁▁▁▁ |
phys_team_daypweek_sum | 112 | 0.99 | 3.67 | 3.75 | 0 | 0.00 | 3.00 | 6.00 | 36.00 | ▇▁▁▁▁ |
art_daypweek_sum | 118 | 0.99 | 2.15 | 3.23 | 0 | 0.00 | 1.00 | 3.00 | 36.00 | ▇▁▁▁▁ |
sport_act_all_daypweek_sum | 273 | 0.98 | 7.63 | 6.40 | 0 | 3.00 | 6.12 | 11.00 | 103.25 | ▇▁▁▁▁ |
method used by Kerlic et al. They focus only on days per week. The data were converted differently.
sport_act <-as_tibble(read.csv(paste0(dataFold,"ABCD_SPACSS01_DATA_TABLE.csv")))
sport_act_kerlic_sum <- sport_act %>%
# change 999 to 0. don't know seems to infer that the child doesn't do that activiy
mutate_at(vars(starts_with("SAI_SS_")), ~ replace(., which(.==999), 0)) %>%
# 0 = 0; 1 = 1; 2 = 2; 3 = 3; 4 = 4; 5 = 5; 6 = 6; 7 = 7; 8 = Once every 2 weeks; 9 = One day every month; 10 = Less than one day per month/; 999 = Don't know | When ballet/dance was not endorsed, values for the follow-up questions are missing. Here, missing values for the "... how many...?" follow-up questions have been replaced with "0".
#change this so that 0 = nothing, .125 = Less than one day per month, .25 = One day every month, .5 =Once every 2 weeks, 1 = 1 day per week and so on
mutate_at(.vars = vars(ends_with("_PERWK_P")),
.funs = funs(case_when(. == 10 ~ 1,
. == 9 ~ 2,
. == 8 ~ 3,
. == 1 ~ 4,
. == 2 ~ 5,
. == 3 ~ 6,
. == 4 ~ 7,
. == 5 ~ 8,
. == 6 ~ 9,
. == 7 ~ 10,
TRUE ~ as.numeric(.)))) %>%
mutate(phys_ind_daypweek_sum = SAI_SS_SBOARD_PERWK_P + SAI_SS_CLIMB_PERWK_P + SAI_SS_GYM_PERWK_P + SAI_SS_ISKATE_PERWK_P + SAI_SS_M_ARTS_PERWK_P + SAI_SS_SKATE_PERWK_P + SAI_SS_DANCE_PERWK_P + SAI_SS_SURF_PERWK_P + SAI_SS_TENNIS_PERWK_P + SAI_SS_RUN_PERWK_P + SAI_SS_MMA_PERWK_P + SAI_SS_YOGA_PERWK_P) %>%
mutate(phys_team_daypweek_sum = SAI_SS_BASE_PERWK_P + SAI_SS_BASKET_PERWK_P + SAI_SS_FHOCK_PERWK_P + SAI_SS_FBALL_PERWK_P + SAI_SS_IHOCK_PERWK_P + SAI_SS_POLO_PERWK_P + SAI_SS_LAX_PERWK_P + SAI_SS_RUGBY_PERWK_P + SAI_SS_SOC_PERWK_P + SAI_SS_WPOLO_PERWK_P +SAI_SS_VBALL_PERWK_P) %>%
mutate(art_daypweek_sum = SAI_SS_COLLECT_PERWK_P + SAI_SS_MUSIC_PERWK_P + SAI_SS_ART_PERWK_P + SAI_SS_DRAMA_PERWK_P + SAI_SS_CRAFTS_PERWK_P + SAI_SS_CHESS_PERWK_P) %>%
mutate(sport_act_all_daypweek_sum = phys_ind_daypweek_sum + phys_team_daypweek_sum + art_daypweek_sum) %>%
select( SUBJECTKEY, EVENTNAME, ends_with("_daypweek_sum"))
sport_act_kerlic_sum %>% filter(EVENTNAME =="baseline_year_1_arm_1") %>%
select(-SUBJECTKEY, -EVENTNAME, ends_with('_daypweek_sum')) %>%
skimr::skim()
Name | Piped data |
Number of rows | 11878 |
Number of columns | 4 |
_______________________ | |
Column type frequency: | |
numeric | 4 |
________________________ | |
Group variables | None |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
phys_ind_daypweek_sum | 93 | 0.99 | 4.89 | 5.64 | 0 | 0 | 4 | 8 | 70 | ▇▁▁▁▁ |
phys_team_daypweek_sum | 112 | 0.99 | 8.12 | 7.60 | 0 | 0 | 6 | 13 | 54 | ▇▃▁▁▁ |
art_daypweek_sum | 118 | 0.99 | 4.96 | 6.24 | 0 | 0 | 4 | 8 | 54 | ▇▁▁▁▁ |
sport_act_all_daypweek_sum | 273 | 0.98 | 17.89 | 13.72 | 0 | 8 | 16 | 26 | 170 | ▇▁▁▁▁ |
ABCD Youth Risk Behavior Survey Exercise Physical Activity
phyc_act <-as_tibble(read.csv(paste0(dataFold,"ABCD_YRB01_DATA_TABLE.csv"))) %>%
rename(physc_act_days = PHYSICAL_ACTIVITY1_Y) %>%
select(SUBJECTKEY, EVENTNAME, physc_act_days)
#During the past 7 days, on how many days were you physically active for a total of at least 60 minutes per day? (Add up all the time you spent in any kind of physical activity that increased your heart rate and made you breathe hard some of the time)
phyc_act %>% filter(EVENTNAME =="baseline_year_1_arm_1") %>%
select(-SUBJECTKEY, -EVENTNAME) %>%
skimr::skim()
Name | Piped data |
Number of rows | 11878 |
Number of columns | 1 |
_______________________ | |
Column type frequency: | |
numeric | 1 |
________________________ | |
Group variables | None |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
physc_act_days | 28 | 1 | 3.49 | 2.32 | 0 | 2 | 3 | 5 | 7 | ▇▅▇▅▇ |
ABCD Youth Anthropometrics Modified From PhenX values are questionable, even after deleting outliers. We ended up not using them.
anthro <-as_tibble(read.csv(paste0(dataFold,"ABCD_ANT01_DATA_TABLE.csv")))
count(anthro,ANTHROWEIGHTCAST)
## # A tibble: 3 × 2
## ANTHROWEIGHTCAST n
## <int> <int>
## 1 0 28185
## 2 1 82
## 3 NA 1417
# remove those (82) with cast as BMI won't be accurate
bmi_waist <- anthro %>%
# filter(ANTHROHEIGHTCALC > 30) %>% # remove those who are unusally short. Potentially error in data entering
# filter(ANTHROWEIGHTCALC < 500) %>%
# filter(!rstatix::is_outlier(ANTHROHEIGHTCALC) & !rstatix::is_outlier(ANTHROWEIGHTCALC)) %>%
mutate(bmi = ifelse(ANTHROWEIGHTCAST == 0 | is.na(ANTHROWEIGHTCAST),
(ANTHROWEIGHTCALC/(ANTHROHEIGHTCALC^2))*703,NA)) %>%
rename(waist = ANTHRO_WAIST_CM) %>%
select(SUBJECTKEY, EVENTNAME, bmi, waist, ANTHROWEIGHTCALC, ANTHROHEIGHTCALC)
# anthro %>%
# mutate(bmi = ifelse(ANTHROWEIGHTCAST == 0 | is.na(ANTHROWEIGHTCAST),
# (ANTHROWEIGHTCALC/(ANTHROHEIGHTCALC^2))*703,NA)) %>%
# rename(waist = ANTHRO_WAIST_CM) %>%
# arrange(desc(bmi)) %>% glimpse()
# bmi_waist %>% arrange(desc(bmi)) %>% glimpse()
# bmi_waist %>% arrange(bmi) %>% glimpse()
#
# anthro %>% rstatix::identify_outliers(ANTHROHEIGHTCALC) %>% arrange(ANTHROHEIGHTCALC) %>% View()
# anthro %>% rstatix::identify_outliers(ANTHROHEIGHTCALC) %>% arrange(desc(ANTHROHEIGHTCALC)) %>% View()
# boxplot(anthro$ANTHROHEIGHTCALC)$out
# boxplot(anthro$ANTHROWEIGHTCALC)$out
#
# boxplot(bmi_waist$ANTHROWEIGHTCALC)$out
bmi_waist %>% filter(EVENTNAME =="baseline_year_1_arm_1") %>%
select(-SUBJECTKEY, -EVENTNAME) %>%
skimr::skim()
Name | Piped data |
Number of rows | 11878 |
Number of columns | 4 |
_______________________ | |
Column type frequency: | |
numeric | 4 |
________________________ | |
Group variables | None |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
bmi | 39 | 1 | 19.29 | 36.65 | 2.08 | 15.94 | 17.64 | 20.65 | 3017.04 | ▇▁▁▁▁ |
waist | 17 | 1 | 26.48 | 4.30 | 0.00 | 23.50 | 25.50 | 28.70 | 73.00 | ▁▇▂▁▁ |
ANTHROWEIGHTCALC | 11 | 1 | 82.56 | 23.76 | 0.00 | 66.05 | 76.50 | 93.00 | 272.00 | ▁▇▁▁▁ |
ANTHROHEIGHTCALC | 9 | 1 | 55.24 | 3.33 | 0.00 | 53.00 | 55.10 | 57.20 | 82.00 | ▁▁▁▇▁ |
all_sum_vars <-
plyr::join_all(list(MriandSite, ACSselected,sumCog, CBCLPrecomputedSelected,
ASRPrecomputedSelected, maniaParent,BISBAS,
UPPS,sleepSum,youthScreenSum,
momSubstanceUse,adversitySum,bilingualSum,
demograpSum,ResidHistDer,NeighboSafety,
school_risk_sum,ParentMonitoring,FamilyConflict_sum,prosocial_sum,
sport_act_kerlic_sum,phyc_act),
by=c('SUBJECTKEY','EVENTNAME'), type='full') %>%
filter(visionProb != 1|is.na(visionProb)) %>% #remove subjects with eyesight problems
select(-visionProb)
all_sum_vars %>% filter(EVENTNAME =="baseline_year_1_arm_1") %>% select(-1:-2) %>%
skimr::skim()
Name | Piped data |
Number of rows | 11852 |
Number of columns | 121 |
_______________________ | |
Column type frequency: | |
character | 2 |
factor | 13 |
numeric | 106 |
________________________ | |
Group variables | None |
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
SITE_ID_L | 90 | 0.99 | 6 | 6 | 0 | 22 | 0 |
MRI_INFO_DEVICESERIALNUMBER | 90 | 0.99 | 0 | 12 | 201 | 30 | 0 |
Variable type: factor
skim_variable | n_missing | complete_rate | ordered | n_unique | top_counts |
---|---|---|---|---|---|
SEX | 0 | 1.00 | FALSE | 2 | M: 6190, F: 5662 |
RACE_ETHNICITY | 2 | 1.00 | FALSE | 5 | Whi: 6175, His: 2403, Bla: 1776, Oth: 1243 |
REL_FAMILY_ID | 0 | 1.00 | FALSE | 9834 | 373: 5, 749: 4, 872: 4, 11: 3 |
tobacco_before_preg | 276 | 0.98 | FALSE | 2 | 0: 9966, 1: 1610 |
tobacco_after_preg | 263 | 0.98 | FALSE | 2 | 0: 10968, 1: 621 |
alcohol_before_preg | 681 | 0.94 | FALSE | 2 | 0: 8294, 1: 2877 |
alcohol_after_preg | 291 | 0.98 | FALSE | 2 | 0: 11245, 1: 316 |
marijuana_before_preg | 337 | 0.97 | FALSE | 2 | 0: 10829, 1: 686 |
marijuana_after_preg | 275 | 0.98 | FALSE | 2 | 0: 11333, 1: 244 |
deveplopment_prematurity | 145 | 0.99 | FALSE | 2 | 0: 9504, 1: 2203 |
bilingual_status | 1028 | 0.91 | FALSE | 2 | 0: 6746, 1: 4078 |
bilingual_degree | 1028 | 0.91 | FALSE | 3 | 0: 6746, 2: 2538, 1: 1540 |
marital | 96 | 0.99 | FALSE | 6 | mar: 7977, nev: 1455, div: 1078, liv: 685 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
INTERVIEW_AGE | 0 | 1.00 | 118.98 | 7.49 | 107.00 | 112.00 | 119.00 | 126.00 | 133.00 | ▇▆▆▆▆ |
ACS_RAKED_PROPENSITY_SCORE | 0 | 1.00 | 691.39 | 351.18 | 161.36 | 448.94 | 619.31 | 821.83 | 1778.92 | ▅▇▂▂▁ |
NIHTBX_FLANKER_UNCORRECTED | 156 | 0.99 | 94.00 | 9.14 | 51.00 | 89.00 | 95.00 | 100.00 | 116.00 | ▁▁▃▇▂ |
NIHTBX_CARDSORT_UNCORRECTED | 155 | 0.99 | 92.52 | 9.51 | 50.00 | 88.00 | 93.00 | 99.00 | 120.00 | ▁▁▆▇▁ |
NIHTBX_PATTERN_UNCORRECTED | 174 | 0.99 | 88.06 | 14.58 | 30.00 | 80.00 | 88.00 | 99.00 | 140.00 | ▁▃▇▅▁ |
NIHTBX_PICVOCAB_UNCORRECTED | 150 | 0.99 | 84.46 | 8.11 | 29.00 | 79.00 | 84.00 | 90.00 | 119.00 | ▁▁▇▇▁ |
NIHTBX_READING_UNCORRECTED | 164 | 0.99 | 90.86 | 6.90 | 59.00 | 87.00 | 91.00 | 95.00 | 119.00 | ▁▁▇▂▁ |
NIHTBX_PICTURE_UNCORRECTED | 162 | 0.99 | 102.81 | 12.08 | 76.00 | 94.00 | 102.00 | 111.00 | 136.00 | ▃▇▇▅▁ |
PEA_RAVLT_LD_TRIAL_VII_TC | 263 | 0.98 | 9.18 | 3.20 | 0.00 | 7.00 | 9.00 | 12.00 | 15.00 | ▁▃▇▇▃ |
NIHTBX_LIST_UNCORRECTED | 199 | 0.98 | 96.65 | 12.09 | 36.00 | 90.00 | 97.00 | 105.00 | 136.00 | ▁▁▅▇▁ |
LMT_SCR_PERC_CORRECT | 336 | 0.97 | 0.59 | 0.17 | 0.00 | 0.47 | 0.56 | 0.72 | 1.00 | ▁▂▇▅▂ |
PEA_WISCV_TRS | 243 | 0.98 | 17.91 | 3.84 | 0.00 | 15.00 | 18.00 | 20.00 | 32.00 | ▁▁▇▅▁ |
NIHTBX_FLUIDCOMP_UNCORRECTED | 238 | 0.98 | 91.55 | 10.65 | 44.00 | 85.00 | 92.00 | 99.00 | 131.00 | ▁▂▇▅▁ |
NIHTBX_CRYST_UNCORRECTED | 182 | 0.98 | 86.37 | 7.06 | 51.00 | 82.00 | 86.00 | 91.00 | 115.00 | ▁▁▇▃▁ |
NIHTBX_TOTALCOMP_UNCORRECTED | 242 | 0.98 | 86.23 | 9.13 | 44.00 | 81.00 | 87.00 | 92.00 | 117.00 | ▁▂▇▇▁ |
CBCL_SCR_SYN_ANXDEP_R | 8 | 1.00 | 2.52 | 3.06 | 0.00 | 0.00 | 1.00 | 4.00 | 26.00 | ▇▁▁▁▁ |
CBCL_SCR_SYN_WITHDEP_R | 8 | 1.00 | 1.04 | 1.71 | 0.00 | 0.00 | 0.00 | 1.00 | 15.00 | ▇▁▁▁▁ |
CBCL_SCR_SYN_SOMATIC_R | 8 | 1.00 | 1.49 | 1.95 | 0.00 | 0.00 | 1.00 | 2.00 | 16.00 | ▇▁▁▁▁ |
CBCL_SCR_SYN_SOCIAL_R | 8 | 1.00 | 1.63 | 2.28 | 0.00 | 0.00 | 1.00 | 2.00 | 18.00 | ▇▁▁▁▁ |
CBCL_SCR_SYN_THOUGHT_R | 8 | 1.00 | 1.62 | 2.20 | 0.00 | 0.00 | 1.00 | 2.00 | 18.00 | ▇▁▁▁▁ |
CBCL_SCR_SYN_ATTENTION_R | 8 | 1.00 | 2.98 | 3.49 | 0.00 | 0.00 | 2.00 | 5.00 | 20.00 | ▇▂▁▁▁ |
CBCL_SCR_SYN_RULEBREAK_R | 8 | 1.00 | 1.19 | 1.86 | 0.00 | 0.00 | 0.00 | 2.00 | 20.00 | ▇▁▁▁▁ |
CBCL_SCR_SYN_AGGRESSIVE_R | 8 | 1.00 | 3.26 | 4.35 | 0.00 | 0.00 | 2.00 | 5.00 | 36.00 | ▇▁▁▁▁ |
CBCL_SCR_SYN_INTERNAL_R | 8 | 1.00 | 5.05 | 5.53 | 0.00 | 1.00 | 3.00 | 7.00 | 51.00 | ▇▁▁▁▁ |
CBCL_SCR_SYN_EXTERNAL_R | 8 | 1.00 | 4.46 | 5.87 | 0.00 | 0.00 | 2.00 | 6.00 | 49.00 | ▇▁▁▁▁ |
CBCL_SCR_SYN_TOTPROB_R | 8 | 1.00 | 18.19 | 17.98 | 0.00 | 5.00 | 13.00 | 25.00 | 139.00 | ▇▂▁▁▁ |
CBCL_SCR_DSM5_DEPRESS_R | 8 | 1.00 | 1.27 | 2.01 | 0.00 | 0.00 | 0.00 | 2.00 | 19.00 | ▇▁▁▁▁ |
CBCL_SCR_DSM5_ANXDISORD_R | 8 | 1.00 | 2.06 | 2.43 | 0.00 | 0.00 | 1.00 | 3.00 | 17.00 | ▇▂▁▁▁ |
CBCL_SCR_DSM5_SOMATICPR_R | 8 | 1.00 | 1.08 | 1.51 | 0.00 | 0.00 | 0.00 | 2.00 | 11.00 | ▇▁▁▁▁ |
CBCL_SCR_DSM5_ADHD_R | 8 | 1.00 | 2.62 | 2.97 | 0.00 | 0.00 | 2.00 | 4.00 | 14.00 | ▇▃▂▁▁ |
CBCL_SCR_DSM5_OPPOSIT_R | 8 | 1.00 | 1.77 | 2.04 | 0.00 | 0.00 | 1.00 | 3.00 | 10.00 | ▇▂▁▁▁ |
CBCL_SCR_DSM5_CONDUCT_R | 8 | 1.00 | 1.28 | 2.36 | 0.00 | 0.00 | 0.00 | 2.00 | 25.00 | ▇▁▁▁▁ |
CBCL_SCR_07_SCT_R | 8 | 1.00 | 0.52 | 1.00 | 0.00 | 0.00 | 0.00 | 1.00 | 8.00 | ▇▁▁▁▁ |
CBCL_SCR_07_OCD_R | 8 | 1.00 | 1.34 | 1.82 | 0.00 | 0.00 | 1.00 | 2.00 | 14.00 | ▇▂▁▁▁ |
CBCL_SCR_07_STRESS_R | 8 | 1.00 | 2.90 | 3.35 | 0.00 | 0.00 | 2.00 | 4.00 | 24.00 | ▇▂▁▁▁ |
ASR_SCR_PERSTR_T | 106 | 0.99 | 47.90 | 9.37 | 20.00 | 42.00 | 49.00 | 56.00 | 60.00 | ▁▂▃▆▇ |
ASR_SCR_ANXDEP_T | 106 | 0.99 | 53.46 | 5.71 | 50.00 | 50.00 | 50.00 | 55.00 | 98.00 | ▇▁▁▁▁ |
ASR_SCR_WITHDRAWN_T | 106 | 0.99 | 52.82 | 5.10 | 50.00 | 50.00 | 51.00 | 53.00 | 97.00 | ▇▁▁▁▁ |
ASR_SCR_SOMATIC_T | 106 | 0.99 | 54.78 | 6.18 | 50.00 | 50.00 | 52.00 | 57.00 | 98.00 | ▇▂▁▁▁ |
ASR_SCR_THOUGHT_T | 106 | 0.99 | 52.93 | 5.09 | 50.00 | 50.00 | 51.00 | 54.00 | 95.00 | ▇▁▁▁▁ |
ASR_SCR_ATTENTION_T | 106 | 0.99 | 53.90 | 5.88 | 50.00 | 50.00 | 51.00 | 57.00 | 94.00 | ▇▂▁▁▁ |
ASR_SCR_AGGRESSIVE_T | 106 | 0.99 | 53.35 | 5.06 | 50.00 | 50.00 | 51.00 | 55.00 | 89.00 | ▇▂▁▁▁ |
ASR_SCR_RULEBREAK_T | 106 | 0.99 | 52.56 | 4.71 | 50.00 | 50.00 | 50.00 | 52.00 | 83.00 | ▇▁▁▁▁ |
ASR_SCR_INTRUSIVE_T | 106 | 0.99 | 51.65 | 3.41 | 50.00 | 50.00 | 50.00 | 51.00 | 76.00 | ▇▁▁▁▁ |
ASR_SCR_INTERNAL_T | 106 | 0.99 | 48.13 | 10.55 | 30.00 | 40.00 | 48.00 | 55.00 | 95.00 | ▆▇▃▁▁ |
ASR_SCR_EXTERNAL_T | 106 | 0.99 | 45.96 | 9.62 | 30.00 | 38.00 | 46.00 | 52.00 | 90.00 | ▇▇▃▁▁ |
ASR_SCR_TOTPROB_T | 106 | 0.99 | 43.00 | 10.23 | 25.00 | 36.00 | 43.00 | 50.00 | 89.00 | ▆▇▃▁▁ |
ASR_SCR_DEPRESS_T | 106 | 0.99 | 54.03 | 5.98 | 50.00 | 50.00 | 51.00 | 57.00 | 100.00 | ▇▁▁▁▁ |
ASR_SCR_ANXDISORD_T | 106 | 0.99 | 53.51 | 5.38 | 50.00 | 50.00 | 51.00 | 54.00 | 80.00 | ▇▁▁▁▁ |
ASR_SCR_SOMATICPR_T | 106 | 0.99 | 54.78 | 6.52 | 50.00 | 50.00 | 51.00 | 58.00 | 100.00 | ▇▂▁▁▁ |
ASR_SCR_AVOIDANT_T | 106 | 0.99 | 53.21 | 5.42 | 50.00 | 50.00 | 51.00 | 54.00 | 90.00 | ▇▁▁▁▁ |
ASR_SCR_ADHD_T | 106 | 0.99 | 53.25 | 5.57 | 50.00 | 50.00 | 51.00 | 53.00 | 98.00 | ▇▁▁▁▁ |
ASR_SCR_ANTISOCIAL_T | 106 | 0.99 | 53.01 | 4.68 | 50.00 | 50.00 | 51.00 | 54.00 | 83.00 | ▇▁▁▁▁ |
ASR_SCR_INATTENTION_T | 106 | 0.99 | 54.30 | 6.51 | 50.00 | 50.00 | 51.00 | 57.00 | 90.00 | ▇▂▁▁▁ |
ASR_SCR_HYPERACTIVE_T | 106 | 0.99 | 52.03 | 4.27 | 50.00 | 50.00 | 50.00 | 51.00 | 80.00 | ▇▁▁▁▁ |
mania_parent | 8 | 1.00 | 1.30 | 2.77 | 0.00 | 0.00 | 0.00 | 1.00 | 28.00 | ▇▁▁▁▁ |
BISAvg | 22 | 1.00 | 1.38 | 0.71 | 0.00 | 0.75 | 1.25 | 2.00 | 3.00 | ▃▅▇▃▂ |
BASRRAvg | 23 | 1.00 | 2.20 | 0.62 | 0.00 | 1.75 | 2.25 | 2.75 | 3.00 | ▁▁▅▆▇ |
BASDriveAvg | 23 | 1.00 | 1.04 | 0.77 | 0.00 | 0.50 | 1.00 | 1.50 | 3.00 | ▇▆▅▂▂ |
BASFunAvg | 23 | 1.00 | 1.43 | 0.66 | 0.00 | 1.00 | 1.50 | 1.75 | 3.00 | ▂▅▇▃▂ |
BASAllAvg | 23 | 1.00 | 1.55 | 0.54 | 0.00 | 1.17 | 1.50 | 1.92 | 3.00 | ▁▅▇▅▂ |
UPPS_Y_SS_NEGATIVE_URGENCY | 23 | 1.00 | 8.49 | 2.65 | 4.00 | 7.00 | 8.00 | 10.00 | 16.00 | ▆▇▇▂▁ |
UPPS_Y_SS_LACK_OF_PLANNING | 23 | 1.00 | 7.74 | 2.38 | 4.00 | 6.00 | 8.00 | 9.00 | 16.00 | ▆▇▅▁▁ |
UPPS_Y_SS_SENSATION_SEEKING | 23 | 1.00 | 9.77 | 2.68 | 4.00 | 8.00 | 10.00 | 12.00 | 16.00 | ▂▅▇▃▂ |
UPPS_Y_SS_POSITIVE_URGENCY | 23 | 1.00 | 7.99 | 2.96 | 4.00 | 6.00 | 8.00 | 10.00 | 16.00 | ▇▆▆▂▁ |
UPPS_Y_SS_LACK_OF_PERSEVERANCE | 23 | 1.00 | 7.04 | 2.25 | 4.00 | 5.00 | 7.00 | 8.00 | 16.00 | ▇▆▃▁▁ |
sleep_hours | 5 | 1.00 | 1.72 | 0.81 | 1.00 | 1.00 | 2.00 | 2.00 | 5.00 | ▇▆▂▁▁ |
sleep_disturb | 5 | 1.00 | 1.93 | 0.98 | 1.00 | 1.00 | 2.00 | 2.00 | 5.00 | ▇▇▂▁▁ |
sleep_initiate_maintain | 5 | 1.00 | 11.75 | 3.75 | 7.00 | 9.00 | 11.00 | 13.00 | 35.00 | ▇▃▁▁▁ |
sleep_breath | 5 | 1.00 | 3.77 | 1.25 | 3.00 | 3.00 | 3.00 | 4.00 | 15.00 | ▇▁▁▁▁ |
sleep_arousal | 5 | 1.00 | 3.44 | 0.92 | 3.00 | 3.00 | 3.00 | 4.00 | 15.00 | ▇▁▁▁▁ |
sleep_transition | 32 | 1.00 | 8.18 | 2.63 | 6.00 | 6.00 | 7.00 | 9.00 | 30.00 | ▇▁▁▁▁ |
sleep_somnolence | 6 | 1.00 | 6.95 | 2.44 | 5.00 | 5.00 | 6.00 | 8.00 | 25.00 | ▇▁▁▁▁ |
sleep_hyperhydrosis | 5 | 1.00 | 2.44 | 1.18 | 2.00 | 2.00 | 2.00 | 2.00 | 10.00 | ▇▁▁▁▁ |
sleep_total | 33 | 1.00 | 36.53 | 8.24 | 26.00 | 31.00 | 35.00 | 40.00 | 126.00 | ▇▁▁▁▁ |
matureGames_Screen | 20 | 1.00 | 0.57 | 0.87 | 0.00 | 0.00 | 0.00 | 1.00 | 3.00 | ▇▃▁▁▁ |
matureMovies_Screen | 21 | 1.00 | 0.38 | 0.64 | 0.00 | 0.00 | 0.00 | 1.00 | 3.00 | ▇▃▁▁▁ |
wkdySum_Screen | 37 | 1.00 | 3.46 | 3.10 | 0.00 | 1.25 | 2.50 | 4.75 | 24.00 | ▇▂▁▁▁ |
wkndSum_Screen | 42 | 1.00 | 4.62 | 3.63 | 0.00 | 2.00 | 3.50 | 6.25 | 24.00 | ▇▃▁▁▁ |
deveplopment_birth_complications | 761 | 0.94 | 0.37 | 0.74 | 0.00 | 0.00 | 0.00 | 1.00 | 8.00 | ▇▁▁▁▁ |
deveplopment_pregnancy_complications | 744 | 0.94 | 0.61 | 1.02 | 0.00 | 0.00 | 0.00 | 1.00 | 12.00 | ▇▁▁▁▁ |
bilingual_use | 1028 | 0.91 | 1.01 | 1.69 | 0.00 | 0.00 | 0.00 | 1.00 | 9.00 | ▇▂▁▁▁ |
education1stPar | 17 | 1.00 | 16.60 | 2.77 | 1.00 | 15.00 | 18.00 | 19.00 | 21.00 | ▁▁▂▅▇ |
education2ndPar | 2460 | 0.79 | 16.38 | 3.06 | 0.00 | 15.00 | 18.00 | 18.00 | 21.00 | ▁▁▁▅▇ |
educationAvg | 14 | 1.00 | 16.38 | 2.70 | 3.00 | 15.00 | 17.00 | 18.50 | 21.00 | ▁▁▂▇▇ |
combinedIncome | 1015 | 0.91 | 7.23 | 2.42 | 1.00 | 6.00 | 8.00 | 9.00 | 10.00 | ▂▂▃▆▇ |
householdSize | 279 | 0.98 | 4.70 | 1.55 | 0.00 | 4.00 | 4.00 | 5.00 | 19.00 | ▂▇▁▁▁ |
econ_insecurities_sum | 134 | 0.99 | 0.47 | 1.10 | 0.00 | 0.00 | 0.00 | 0.00 | 7.00 | ▇▁▁▁▁ |
area_deprivation_index | 694 | 0.94 | 92.71 | 24.86 | 0.00 | 86.64 | 98.48 | 108.15 | 125.75 | ▁▁▂▇▇ |
lead_risk | 698 | 0.94 | 5.10 | 3.11 | 0.00 | 2.00 | 5.00 | 8.00 | 10.00 | ▇▆▅▅▆ |
quartic_uniform_crime_reports | 694 | 0.94 | 12.09 | 5.79 | 0.00 | 9.41 | 12.28 | 15.20 | 24.29 | ▂▃▇▅▁ |
neighbo_safety_parent_sum | 47 | 1.00 | 11.67 | 2.93 | 3.00 | 10.00 | 12.00 | 14.00 | 15.00 | ▁▁▃▆▇ |
neighbo_safety_child_sum | 24 | 1.00 | 4.03 | 1.10 | 1.00 | 3.00 | 4.00 | 5.00 | 5.00 | ▁▁▃▆▇ |
sumSchool_environment | 27 | 1.00 | 19.93 | 2.83 | 6.00 | 18.00 | 20.00 | 22.00 | 24.00 | ▁▁▂▇▇ |
sumSchool_involvement | 26 | 1.00 | 13.06 | 2.37 | 4.00 | 12.00 | 13.00 | 15.00 | 16.00 | ▁▁▃▅▇ |
sumSchool_disengagement | 25 | 1.00 | 3.74 | 1.46 | 2.00 | 3.00 | 4.00 | 5.00 | 8.00 | ▇▃▃▁▁ |
parent_monitor_mean | 23 | 1.00 | 4.38 | 0.52 | 1.00 | 4.20 | 4.40 | 4.80 | 5.00 | ▁▁▁▃▇ |
fam_conflict_parent | 12 | 1.00 | 2.54 | 1.96 | 0.00 | 1.00 | 2.00 | 4.00 | 9.00 | ▇▇▅▂▁ |
fam_conflict_children | 27 | 1.00 | 2.04 | 1.95 | 0.00 | 0.00 | 2.00 | 3.00 | 9.00 | ▇▅▂▁▁ |
prosocial_parent_mean | 62 | 0.99 | 1.75 | 0.40 | 0.00 | 1.67 | 2.00 | 2.00 | 2.00 | ▁▁▁▁▇ |
prosocial_youth_mean | 33 | 1.00 | 1.68 | 0.37 | 0.00 | 1.33 | 1.67 | 2.00 | 2.00 | ▁▁▁▂▇ |
phys_ind_daypweek_sum | 93 | 0.99 | 4.89 | 5.64 | 0.00 | 0.00 | 4.00 | 8.00 | 70.00 | ▇▁▁▁▁ |
phys_team_daypweek_sum | 112 | 0.99 | 8.13 | 7.61 | 0.00 | 0.00 | 6.00 | 13.00 | 54.00 | ▇▃▁▁▁ |
art_daypweek_sum | 118 | 0.99 | 4.96 | 6.24 | 0.00 | 0.00 | 4.00 | 8.00 | 54.00 | ▇▁▁▁▁ |
sport_act_all_daypweek_sum | 273 | 0.98 | 17.90 | 13.72 | 0.00 | 8.00 | 16.00 | 26.00 | 170.00 | ▇▁▁▁▁ |
physc_act_days | 28 | 1.00 | 3.50 | 2.32 | 0.00 | 2.00 | 3.00 | 5.00 | 7.00 | ▇▅▇▅▇ |
make sure that there are no members from the same family at different sites
all_sum_vars_baseline <- all_sum_vars %>% filter(EVENTNAME =="baseline_year_1_arm_1")
all_sum_vars_baseline %>% count(SITE_ID_L)
## SITE_ID_L n
## 1 site01 401
## 2 site02 554
## 3 site03 629
## 4 site04 747
## 5 site05 375
## 6 site06 580
## 7 site07 339
## 8 site08 350
## 9 site09 431
## 10 site10 732
## 11 site11 454
## 12 site12 595
## 13 site13 721
## 14 site14 599
## 15 site15 441
## 16 site16 1007
## 17 site17 575
## 18 site18 384
## 19 site19 533
## 20 site20 686
## 21 site21 595
## 22 site22 34
## 23 <NA> 90
# check if there are members from the same family at different sites. There are 6 of them.
all_sum_vars_baseline %>%
drop_na(SITE_ID_L) %>%
filter(SITE_ID_L != "site22") %>%
count(REL_FAMILY_ID, SITE_ID_L) %>%
spread(SITE_ID_L, n, fill = 0) %>%
select(-REL_FAMILY_ID) %>%
as.matrix %>%
crossprod
## site01 site02 site03 site04 site05 site06 site07 site08 site09 site10
## site01 491 0 0 0 0 0 0 0 0 0
## site02 0 1034 0 0 0 0 0 0 0 0
## site03 0 0 751 0 0 0 0 0 0 0
## site04 0 0 0 957 0 0 0 0 0 0
## site05 0 0 0 0 471 0 0 0 0 0
## site06 0 0 0 0 0 686 0 1 0 0
## site07 0 0 0 0 0 0 425 0 0 0
## site08 0 0 0 0 0 1 0 434 0 0
## site09 0 0 0 0 0 0 0 0 479 0
## site10 0 0 0 0 0 0 0 0 0 906
## site11 0 0 0 0 0 0 0 0 0 0
## site12 0 0 0 0 0 0 0 0 0 0
## site13 0 0 0 1 0 0 0 0 0 0
## site14 0 0 0 0 0 0 0 0 0 0
## site15 0 0 0 0 0 0 0 0 0 0
## site16 0 0 0 0 0 0 0 0 0 0
## site17 0 1 0 0 0 0 0 0 0 0
## site18 0 0 0 0 0 0 0 0 0 0
## site19 0 0 0 0 0 1 0 0 0 0
## site20 0 0 0 0 0 0 0 1 0 0
## site21 0 0 0 0 0 0 0 0 0 0
## site11 site12 site13 site14 site15 site16 site17 site18 site19 site20
## site01 0 0 0 0 0 0 0 0 0 0
## site02 0 0 0 0 0 0 1 0 0 0
## site03 0 0 0 0 0 0 0 0 0 0
## site04 0 0 1 0 0 0 0 0 0 0
## site05 0 0 0 0 0 0 0 0 0 0
## site06 0 0 0 0 0 0 0 0 1 0
## site07 0 0 0 0 0 0 0 0 0 0
## site08 0 0 0 0 0 0 0 0 0 1
## site09 0 0 0 0 0 0 0 0 0 0
## site10 0 0 0 0 0 0 0 0 0 0
## site11 582 0 0 0 0 0 0 0 0 0
## site12 0 727 0 0 0 0 0 0 0 0
## site13 0 0 879 0 0 0 0 0 0 0
## site14 0 0 0 1083 0 1 0 0 0 0
## site15 0 0 0 0 525 0 0 0 0 0
## site16 0 0 0 1 0 1389 0 0 0 0
## site17 0 0 0 0 0 0 693 0 0 0
## site18 0 0 0 0 0 0 0 448 0 0
## site19 0 0 0 0 0 0 0 0 967 0
## site20 0 0 0 0 0 0 0 0 0 1148
## site21 0 0 0 0 0 0 0 0 0 0
## site21
## site01 0
## site02 0
## site03 0
## site04 0
## site05 0
## site06 0
## site07 0
## site08 0
## site09 0
## site10 0
## site11 0
## site12 0
## site13 0
## site14 0
## site15 0
## site16 0
## site17 0
## site18 0
## site19 0
## site20 0
## site21 719
#below will remove those 6
all_sum_vars_baseline_no_dup <- all_sum_vars_baseline %>%
drop_na(SITE_ID_L) %>%
filter(SITE_ID_L != "site22") %>%
group_by(REL_FAMILY_ID) %>%
nest(SITE_ID_L, .key="SITE_ID_L") %>%
mutate(dup = ifelse(length(c(unlist(SITE_ID_L)))==1,0,
ifelse(length(unique(c(unlist(SITE_ID_L)))) > 1,1,0))) %>%
unnest(SITE_ID_L) %>%
ungroup() %>%
filter(dup != 1)
## Warning: All elements of `...` must be named.
## Did you want `SITE_ID_L = c(SITE_ID_L)`?
cognition NIHTBX_FLANKER_UNCORRECTED,NIHTBX_CARDSORT_UNCORRECTED,NIHTBX_PATTERN_UNCORRECTED,NIHTBX_PICVOCAB_UNCORRECTED,NIHTBX_READING_UNCORRECTED,NIHTBX_PICTURE_UNCORRECTED,PEA_RAVLT_LD_TRIAL_VII_TC,NIHTBX_LIST_UNCORRECTED,LMT_SCR_PERC_CORRECT,PEA_WISCV_TRS,NIHTBX_FLUIDCOMP_UNCORRECTED,NIHTBX_CRYST_UNCORRECTED,NIHTBX_TOTALCOMP_UNCORRECTED
cognition Sum NIHTBX_FLUIDCOMP_UNCORRECTED,NIHTBX_CRYST_UNCORRECTED,NIHTBX_TOTALCOMP_UNCORRECTED
features CBCL_SCR_SYN_ANXDEP_R, CBCL_SCR_SYN_WITHDEP_R, CBCL_SCR_SYN_SOMATIC_R, CBCL_SCR_SYN_SOCIAL_R, CBCL_SCR_SYN_THOUGHT_R, CBCL_SCR_SYN_ATTENTION_R, CBCL_SCR_SYN_RULEBREAK_R, CBCL_SCR_SYN_AGGRESSIVE_R, ASR_SCR_PERSTR_T, ASR_SCR_ANXDEP_T,ASR_SCR_WITHDRAWN_T, ASR_SCR_SOMATIC_T,ASR_SCR_THOUGHT_T, ASR_SCR_ATTENTION_T, ASR_SCR_AGGRESSIVE_T,ASR_SCR_RULEBREAK_T,ASR_SCR_INTRUSIVE_T,mania_parent,BISAvg,BASRRAvg,BASDriveAvg,BASFunAvg,UPPS_Y_SS_NEGATIVE_URGENCY,UPPS_Y_SS_LACK_OF_PLANNING,UPPS_Y_SS_SENSATION_SEEKING,UPPS_Y_SS_POSITIVE_URGENCY,UPPS_Y_SS_LACK_OF_PERSEVERANCE,sleep_hours,sleep_disturb,sleep_initiate_maintain,sleep_breath,sleep_arousal,sleep_transition,sleep_somnolence,sleep_hyperhydrosis,matureGames_Screen,matureMovies_Screen,wkdySum_Screen,wkndSum_Screen,tobacco_before_preg,tobacco_after_preg,alcohol_before_preg,alcohol_after_preg,marijuana_before_preg,marijuana_after_preg,deveplopment_prematurity,deveplopment_birth_complications,deveplopment_pregnancy_complications,SEX,RACE_ETHNICITY,bilingual_use,marital,educationAvg,combinedIncome,householdSize,econ_insecurities_sum,area_deprivation_index,lead_risk,quartic_uniform_crime_reports,neighbo_safety_parent_sum,neighbo_safety_child_sum,sumSchool_environment,sumSchool_involvement,sumSchool_disengagement,parent_monitor_mean,fam_conflict_parent,fam_conflict_children,prosocial_parent_mean,prosocial_youth_mean, phys_ind_daypweek_sum, phys_team_daypweek_sum, art_daypweek_sum, physc_act_days
cognition <-c("NIHTBX_FLANKER_UNCORRECTED","NIHTBX_CARDSORT_UNCORRECTED","NIHTBX_PATTERN_UNCORRECTED",
"NIHTBX_PICVOCAB_UNCORRECTED","NIHTBX_READING_UNCORRECTED","NIHTBX_PICTURE_UNCORRECTED",
"PEA_RAVLT_LD_TRIAL_VII_TC","NIHTBX_LIST_UNCORRECTED","LMT_SCR_PERC_CORRECT","PEA_WISCV_TRS")
gmodel <-c("NIHTBX_PICVOCAB_UNCORRECTED", "NIHTBX_READING_UNCORRECTED",
"NIHTBX_FLANKER_UNCORRECTED", "NIHTBX_PATTERN_UNCORRECTED",
"NIHTBX_PICTURE_UNCORRECTED", "PEA_RAVLT_LD_TRIAL_VII_TC")
cognition_sum <- c("NIHTBX_FLUIDCOMP_UNCORRECTED","NIHTBX_CRYST_UNCORRECTED","NIHTBX_TOTALCOMP_UNCORRECTED")
features <- c("CBCL_SCR_SYN_ANXDEP_R", "CBCL_SCR_SYN_WITHDEP_R", "CBCL_SCR_SYN_SOMATIC_R", "CBCL_SCR_SYN_SOCIAL_R",
"CBCL_SCR_SYN_THOUGHT_R", "CBCL_SCR_SYN_ATTENTION_R", "CBCL_SCR_SYN_RULEBREAK_R", "CBCL_SCR_SYN_AGGRESSIVE_R",
"ASR_SCR_PERSTR_T", "ASR_SCR_ANXDEP_T","ASR_SCR_WITHDRAWN_T", "ASR_SCR_SOMATIC_T","ASR_SCR_THOUGHT_T",
"ASR_SCR_ATTENTION_T","ASR_SCR_AGGRESSIVE_T","ASR_SCR_RULEBREAK_T","ASR_SCR_INTRUSIVE_T",
"mania_parent",
"BISAvg","BASRRAvg","BASDriveAvg","BASFunAvg",
"UPPS_Y_SS_NEGATIVE_URGENCY","UPPS_Y_SS_LACK_OF_PLANNING","UPPS_Y_SS_SENSATION_SEEKING","UPPS_Y_SS_POSITIVE_URGENCY","UPPS_Y_SS_LACK_OF_PERSEVERANCE",
"sleep_hours","sleep_disturb","sleep_initiate_maintain","sleep_breath","sleep_arousal","sleep_transition","sleep_somnolence","sleep_hyperhydrosis",
"matureGames_Screen","matureMovies_Screen","wkdySum_Screen","wkndSum_Screen",
#"tobacco_before_preg",
"tobacco_after_preg",
#"alcohol_before_preg",
"alcohol_after_preg",
#"marijuana_before_preg",
"marijuana_after_preg",
"deveplopment_prematurity","deveplopment_birth_complications","deveplopment_pregnancy_complications",
"bilingual_use",
"SEX","RACE_ETHNICITY",
"marital","educationAvg","combinedIncome","householdSize","econ_insecurities_sum","area_deprivation_index","lead_risk","quartic_uniform_crime_reports","neighbo_safety_parent_sum","neighbo_safety_child_sum",
"sumSchool_environment","sumSchool_involvement","sumSchool_disengagement",
"parent_monitor_mean","fam_conflict_parent","fam_conflict_children",
"prosocial_parent_mean","prosocial_youth_mean","phys_ind_daypweek_sum", "phys_team_daypweek_sum", "art_daypweek_sum", "physc_act_days")
the missing column is the visual impairment. We won’t use that anyway look like a lot of missing value for bilingual_use. We assume missing value as zero to not lose data. for other ones we will use kmean imputation for contionus and mode imputation for factor
all_sum_vars_baseline_no_dup %>%
select(features) %>%
naniar::vis_miss(warn_large_data = F)
## Note: Using an external vector in selections is ambiguous.
## ℹ Use `all_of(features)` instead of `features` to silence this message.
## ℹ See <https://tidyselect.r-lib.org/reference/faq-external-vector.html>.
## This message is displayed once per session.
all_sum_vars_baseline_no_dup %>%
select(features) %>%
DataExplorer::plot_missing()
missing_feature_values <- all_sum_vars_baseline_no_dup %>%
select(features) %>%
DataExplorer::profile_missing()
# change bilingual na to 0
all_sum_vars_baseline_no_dup_bilin0 <- all_sum_vars_baseline_no_dup %>%
tidyr::replace_na(list(bilingual_use = 0))
otherwise more than half of the data will be lost
all_sum_vars_baseline_no_dup_bilin0 %>% nrow()
## [1] 11716
all_sum_vars_baseline_no_dup_bilin0 %>% drop_na() %>% nrow()
## [1] 5633
NeuroCog2ndOrder <-'
Language =~ NIHTBX_PICVOCAB_UNCORRECTED + NIHTBX_READING_UNCORRECTED
CognitiveFlexibity =~ NIHTBX_FLANKER_UNCORRECTED + NIHTBX_PATTERN_UNCORRECTED
MemoryRecall =~ NIHTBX_PICTURE_UNCORRECTED + PEA_RAVLT_LD_TRIAL_VII_TC
g =~ NA*Language + CognitiveFlexibity + MemoryRecall #estimate the loading of GenAbi -> as opposed to using it as a marker
g ~~ 1*g #need to constrain variance to 1'
all_sum_vars_baseline_no_dup_bilin0_no_na_G<- all_sum_vars_baseline_no_dup_bilin0 %>% drop_na(all_of(gmodel))
#glimpse(all_sum_vars_baseline_no_dup_bilin0_no_na_G)
NeuroCog2ndOrder.Fit <- lavaan::cfa(model = NeuroCog2ndOrder, data = all_sum_vars_baseline_no_dup_bilin0_no_na_G,estimator="MLR")
second_order_output <- lavaan::lavPredict(NeuroCog2ndOrder.Fit, newdata = all_sum_vars_baseline_no_dup_bilin0_no_na_G)
all_sum_vars_baseline_no_dup_bilin0_no_na_G_factor_all_sub <-
all_sum_vars_baseline_no_dup_bilin0_no_na_G %>%
bind_cols(gfactor = second_order_output[,'g'])
#all_sum_vars_baseline_no_dup_bilin0_no_na_G_factor_all_sub %>%
# select(gfactor, features) %>% dlookr::plot_correlate()
Samples: REL_FAMILY_ID (9856 Levels) SITE_ID_L (need to remove 22nd site. having too few subjects) ALSO make sure about EVENTNAME
Target: Factor analysis of cognition: gfactor
70 Features: CBCL_SCR_SYN_ANXDEP_R CBCL_SCR_SYN_WITHDEP_R CBCL_SCR_SYN_SOMATIC_R CBCL_SCR_SYN_SOCIAL_R CBCL_SCR_SYN_THOUGHT_R CBCL_SCR_SYN_ATTENTION_R CBCL_SCR_SYN_RULEBREAK_R CBCL_SCR_SYN_AGGRESSIVE_R ASR_SCR_PERSTR_T ASR_SCR_ANXDEP_T ASR_SCR_WITHDRAWN_T ASR_SCR_SOMATIC_T ASR_SCR_THOUGHT_T ASR_SCR_ATTENTION_T ASR_SCR_AGGRESSIVE_T ASR_SCR_RULEBREAK_T ASR_SCR_INTRUSIVE_T mania_parent BISAvg BASRRAvg BASDriveAvg BASFunAvg UPPS_Y_SS_NEGATIVE_URGENCY UPPS_Y_SS_LACK_OF_PLANNING UPPS_Y_SS_SENSATION_SEEKING UPPS_Y_SS_POSITIVE_URGENCY UPPS_Y_SS_LACK_OF_PERSEVERANCE sleep_hours sleep_disturb sleep_initiate_maintain sleep_breath sleep_arousal sleep_transition sleep_somnolence sleep_hyperhydrosis matureGames_Screen matureMovies_Screen wkdySum_Screen wkndSum_Screen tobacco_before_preg tobacco_after_preg alcohol_before_preg alcohol_after_preg marijuana_before_preg marijuana_after_preg deveplopment_prematurity deveplopment_birth_complications deveplopment_pregnancy_complications bilingual_use marital educationAvg combinedIncome householdSize econ_insecurities_sum area_deprivation_index lead_risk quartic_uniform_crime_reports neighbo_safety_parent_sum neighbo_safety_child_sum sumSchool_environment sumSchool_involvement sumSchool_disengagement parent_monitor_mean fam_conflict_parent fam_conflict_children prosocial_parent_mean prosocial_youth_mean phys_ind_daypweek_sum phys_team_daypweek_sum art_daypweek_sum physc_act_days
Features by catergories:
Child Mental Health (9): CBCL_SCR_SYN_ANXDEP_R CBCL_SCR_SYN_WITHDEP_R CBCL_SCR_SYN_SOMATIC_R CBCL_SCR_SYN_SOCIAL_R CBCL_SCR_SYN_THOUGHT_R CBCL_SCR_SYN_ATTENTION_R CBCL_SCR_SYN_RULEBREAK_R CBCL_SCR_SYN_AGGRESSIVE_R
Parent Mental Health(10): ASR_SCR_PERSTR_T ASR_SCR_ANXDEP_T ASR_SCR_WITHDRAWN_T ASR_SCR_SOMATIC_T ASR_SCR_THOUGHT_T ASR_SCR_ATTENTION_T ASR_SCR_AGGRESSIVE_T ASR_SCR_RULEBREAK_T ASR_SCR_INTRUSIVE_T mania_parent
Child Personality(9): BISAvg BASRRAvg BASDriveAvg BASFunAvg UPPS_Y_SS_NEGATIVE_URGENCY UPPS_Y_SS_LACK_OF_PLANNING UPPS_Y_SS_SENSATION_SEEKING UPPS_Y_SS_POSITIVE_URGENCY UPPS_Y_SS_LACK_OF_PERSEVERANCE
Child Sleep (8): sleep_hours sleep_disturb sleep_initiate_maintain sleep_breath sleep_arousal sleep_transition sleep_somnolence sleep_hyperhydrosis
Physical Activity (4): phys_ind_daypweek_sum phys_team_daypweek_sum art_daypweek_sum physc_act_days
Child Screen Use (4): matureGames_Screen matureMovies_Screen wkdySum_Screen wkndSum_Screen
Parent Drug Use (6): tobacco_before_preg tobacco_after_preg alcohol_before_preg alcohol_after_preg marijuana_before_preg marijuana_after_preg
Child Developmental Adversity (3): deveplopment_prematurity deveplopment_birth_complications deveplopment_pregnancy_complications
Child Socio-Demographics (15): bilingual_use marital educationAvg combinedIncome householdSize econ_insecurities_sum area_deprivation_index lead_risk quartic_uniform_crime_reports neighbo_safety_parent_sum neighbo_safety_child_sum sumSchool_environment sumSchool_involvement sumSchool_disengagement
Social Interaction (5): parent_monitor_mean fam_conflict_parent fam_conflict_children prosocial_parent_mean prosocial_youth_mean
require(doParallel)
cores <- parallel::detectCores(logical = FALSE)
registerDoParallel(cores = cores - 1)
gfactor_all_features_formular <- as.formula(
paste("gfactor",
paste(features, collapse = " + "),
sep = " ~ "))
print(gfactor_all_features_formular)
## gfactor ~ CBCL_SCR_SYN_ANXDEP_R + CBCL_SCR_SYN_WITHDEP_R + CBCL_SCR_SYN_SOMATIC_R +
## CBCL_SCR_SYN_SOCIAL_R + CBCL_SCR_SYN_THOUGHT_R + CBCL_SCR_SYN_ATTENTION_R +
## CBCL_SCR_SYN_RULEBREAK_R + CBCL_SCR_SYN_AGGRESSIVE_R + ASR_SCR_PERSTR_T +
## ASR_SCR_ANXDEP_T + ASR_SCR_WITHDRAWN_T + ASR_SCR_SOMATIC_T +
## ASR_SCR_THOUGHT_T + ASR_SCR_ATTENTION_T + ASR_SCR_AGGRESSIVE_T +
## ASR_SCR_RULEBREAK_T + ASR_SCR_INTRUSIVE_T + mania_parent +
## BISAvg + BASRRAvg + BASDriveAvg + BASFunAvg + UPPS_Y_SS_NEGATIVE_URGENCY +
## UPPS_Y_SS_LACK_OF_PLANNING + UPPS_Y_SS_SENSATION_SEEKING +
## UPPS_Y_SS_POSITIVE_URGENCY + UPPS_Y_SS_LACK_OF_PERSEVERANCE +
## sleep_hours + sleep_disturb + sleep_initiate_maintain + sleep_breath +
## sleep_arousal + sleep_transition + sleep_somnolence + sleep_hyperhydrosis +
## matureGames_Screen + matureMovies_Screen + wkdySum_Screen +
## wkndSum_Screen + tobacco_after_preg + alcohol_after_preg +
## marijuana_after_preg + deveplopment_prematurity + deveplopment_birth_complications +
## deveplopment_pregnancy_complications + bilingual_use + SEX +
## RACE_ETHNICITY + marital + educationAvg + combinedIncome +
## householdSize + econ_insecurities_sum + area_deprivation_index +
## lead_risk + quartic_uniform_crime_reports + neighbo_safety_parent_sum +
## neighbo_safety_child_sum + sumSchool_environment + sumSchool_involvement +
## sumSchool_disengagement + parent_monitor_mean + fam_conflict_parent +
## fam_conflict_children + prosocial_parent_mean + prosocial_youth_mean +
## phys_ind_daypweek_sum + phys_team_daypweek_sum + art_daypweek_sum +
## physc_act_days
site_col <- all_sum_vars_baseline_no_dup_bilin0 %>%
distinct(SITE_ID_L) %>%
arrange(SITE_ID_L)
site_list <- as.list(site_col$SITE_ID_L)
site_char <- as.character(unlist(site_col$SITE_ID_L))
NeuroCog2ndOrder <-'
Language =~ NIHTBX_PICVOCAB_UNCORRECTED + NIHTBX_READING_UNCORRECTED
CognitiveFlexibity =~ NIHTBX_FLANKER_UNCORRECTED + NIHTBX_PATTERN_UNCORRECTED
MemoryRecall =~ NIHTBX_PICTURE_UNCORRECTED + PEA_RAVLT_LD_TRIAL_VII_TC
g =~ NA*Language + CognitiveFlexibity + MemoryRecall #estimate the loading of GenAbi -> as opposed to using it as a marker
g ~~ 1*g #need to constrain variance to 1'
NeuroCog2ndOrder.Fit <- lavaan::cfa(model = NeuroCog2ndOrder, data = all_sum_vars_baseline_no_dup_bilin0_no_na_G,estimator="MLR")
second_order_output <- lavaan::lavPredict(NeuroCog2ndOrder.Fit, newdata = all_sum_vars_baseline_no_dup_bilin0_no_na_G)
all_sum_vars_baseline_no_dup_bilin0_no_na_G_factor_all_sub <-
all_sum_vars_baseline_no_dup_bilin0_no_na_G %>%
bind_cols(gfactor = second_order_output[,'g'])
split_func <- function(site)
{
train_indices <- which(all_sum_vars_baseline_no_dup_bilin0_no_na_G$SITE_ID_L != site)
test_indices <- which(all_sum_vars_baseline_no_dup_bilin0_no_na_G$SITE_ID_L == site)
NeuroCog2ndOrder.Fit <- lavaan::cfa(model = NeuroCog2ndOrder,
data = all_sum_vars_baseline_no_dup_bilin0_no_na_G[train_indices,],
estimator="MLR")
second_order_output_train <- lavaan::lavPredict(NeuroCog2ndOrder.Fit,
newdata = all_sum_vars_baseline_no_dup_bilin0_no_na_G[train_indices,])
second_order_output_test <- lavaan::lavPredict(NeuroCog2ndOrder.Fit,
newdata = all_sum_vars_baseline_no_dup_bilin0_no_na_G[test_indices,])
all_sum_vars_baseline_no_dup_bilin0_no_na_G$gfactor <- NA
all_sum_vars_baseline_no_dup_bilin0_no_na_G$gfactor[train_indices] <- second_order_output_train[,'g']
all_sum_vars_baseline_no_dup_bilin0_no_na_G$gfactor[test_indices] <- second_order_output_test[,'g']
indices <-
list(analysis = train_indices,
assessment = test_indices)
split <- make_splits(indices, all_sum_vars_baseline_no_dup_bilin0_no_na_G)
return(split)}
split_list <- map(site_list, ~split_func(.x))
note step_naomit causes error, so I decided to drop na from the target var prior to this step
recipe_func <- function(split) {
preprocessing_recipe <- recipe(gfactor_all_features_formular,
data = training(split)) %>%
# Impute missing for categorical
step_impute_mode(all_nominal(), -all_outcomes()) %>%
# change all nominal into dummy variables
step_dummy(all_nominal(), -all_outcomes()) %>%
# normalize numeric predictors and outcome
step_normalize(all_numeric(), all_nominal()) %>%
# Impute missing for numeric
step_impute_knn(all_numeric(), -all_outcomes(),
neighbors = 5)
# %>%
# # remove na from outcome
# step_naomit(all_outcomes())
return(preprocessing_recipe)}
recipe_list <- map(split_list, ~recipe_func(.x))
require(doParallel)
cores <- parallel::detectCores(logical = FALSE)
registerDoParallel(cores = cores - 1)
elastic_net_tuning_func <- function(split, preprocessing_recipe) {
# create fold for hyperparamer tuning
set.seed(123)
tuning_cv_folds <- training(split) %>%
vfold_cv(v = 10)
tuning_cv_folds
#use parsnip to build models
elastic_net_model <- linear_reg(
penalty = tune(),
mixture = tune()) %>%
set_engine("glmnet") %>%
set_mode("regression")
## add recipe and model into the workflow
elastic_net_wfl <- workflow() %>%
add_recipe(preprocessing_recipe) %>%
add_model(elastic_net_model)
#dial to tune parameter
elastic_net_set <- parameters(
penalty(range = c(-10,1), trans = log10_trans()),
mixture())
## 200 levels of lambda and 11 levels of alpha (0, .1 to 1)
elastic_net_grid <- grid_regular(elastic_net_set,
levels = c(200,11))
elastic_net_ctrl <- control_grid(save_pred = TRUE,
verbose = TRUE,
# parallel_over = "everything"
parallel_over = "resamples"
)
elastic_net_tune <- tune_grid(elastic_net_wfl,
resamples = tuning_cv_folds,
grid = elastic_net_grid,
metrics = metric_set(mae),
control = elastic_net_ctrl)
##select the best tuned lambda and alpha
best_elastic_net_model <- select_best(elastic_net_tune, metric = "mae")
##show best hyperparameter <-
best_elastic_net_hyperpara <- show_best(elastic_net_tune, metric = "mae")
## finalise workflow
elastic_net_wfl_final <-
elastic_net_wfl %>%
finalize_workflow(best_elastic_net_model)
#extract model values
elastic_net_model_val <- elastic_net_wfl_final %>%
fit(training(split)) %>%
pull_workflow_fit()
return(list(elastic_net_wfl_final = elastic_net_wfl_final,
best_elastic_net_model = best_elastic_net_model,
best_elastic_net_hyperpara = best_elastic_net_hyperpara,
elastic_net_model_val = elastic_net_model_val))
}
start_time <- Sys.time()
elastic_net_tuned_list <- map2(split_list,
recipe_list,
~elastic_net_tuning_func(split = .x,
preprocessing_recipe = .y))
stop_time <- Sys.time()
stop_time - start_time
elastic_net_wfl_final_list <- map(elastic_net_tuned_list, "elastic_net_wfl_final")
best_elastic_net_model_list <- map(elastic_net_tuned_list, "best_elastic_net_model")
best_elastic_net_hyperpara_list <- map(elastic_net_tuned_list, "best_elastic_net_hyperpara")
elastic_net_model_val_list <- map(elastic_net_tuned_list, "elastic_net_model_val")
elastic_net_fit_func <- function(split, preprocessing_recipe, elastic_net_wfl_final){
elastic_net_final_fit <-
elastic_net_wfl_final %>%
last_fit(split = split,
metrics = metric_set(rsq_trad, mae, rmse))
elastic_net_final_metrics <- elastic_net_final_fit %>% collect_metrics()
predicted_df <- elastic_net_final_fit %>%
collect_predictions() %>%
select(.pred) %>%
rename(non_brain_predicted = .pred) %>%
bind_cols(testing(split))
predicted_df_baked <- elastic_net_final_fit %>%
collect_predictions() %>%
select(.pred) %>%
rename(non_brain_predicted = .pred) %>%
bind_cols(preprocessing_recipe %>%
prep(training = training(split)) %>%
bake(new_data = testing(split)))
return(list(elastic_net_final_fit = elastic_net_final_fit,
elastic_net_final_metrics = elastic_net_final_metrics,
predicted_df = predicted_df,
predicted_df_baked = predicted_df_baked))}
# future::plan("multicore", workers = cores - 1)
# Forked processing ('multicore') is disabled in future (>= 1.13.0) when running R from RStudio, because it is considered unstable.
future::plan("multisession",
workers = cores - 1)
input_list <- list(split = split_list,
preprocessing_recipe = recipe_list,
elastic_net_wfl_final = elastic_net_wfl_final_list)
elastic_net_fit_list <- furrr::future_pmap(input_list,
~elastic_net_fit_func(split = ..1,
preprocessing_recipe = ..2,
elastic_net_wfl_final = ..3),
.options = furrr::furrr_options(seed = 123))
elastic_net_final_fit_list <- map(elastic_net_fit_list, "elastic_net_final_fit")
elastic_net_final_metrics_list <- map(elastic_net_fit_list, "elastic_net_final_metrics")
predicted_df_list <- map(elastic_net_fit_list, "predicted_df")
predicted_df_baked_list <- map(elastic_net_fit_list, "predicted_df_baked")
names(best_elastic_net_model_list) <- site_char
best_elastic_net_model_all_sites <- bind_rows(best_elastic_net_model_list,
.id = "SITE_ID_L")
names(elastic_net_final_metrics_list) <- site_char
elastic_net_final_metrics_all_sites <- bind_rows(elastic_net_final_metrics_list,
.id = "SITE_ID_L")
names(predicted_df_list) <- site_char
predicted_df_all_sites <- bind_rows(predicted_df_list,
.id = "SITE_ID_L")
names(predicted_df_baked_list) <- site_char
predicted_df_baked_all_sites <- bind_rows(predicted_df_baked_list,
.id = "SITE_ID_L")
glimpse(best_elastic_net_model_all_sites)
## Rows: 21
## Columns: 4
## $ SITE_ID_L <chr> "site01", "site02", "site03", "site04", "site05", "site06", …
## $ penalty <dbl> 0.019563983, 0.022219469, 0.019563983, 0.019563983, 0.013354…
## $ mixture <dbl> 0.1, 0.1, 0.1, 0.1, 0.2, 0.1, 0.1, 1.0, 0.1, 0.1, 0.1, 0.1, …
## $ .config <chr> "Preprocessor1_Model0351", "Preprocessor1_Model0352", "Prepr…
glimpse(elastic_net_final_metrics_all_sites)
## Rows: 63
## Columns: 5
## $ SITE_ID_L <chr> "site01", "site01", "site01", "site02", "site02", "site02",…
## $ .metric <chr> "rsq_trad", "mae", "rmse", "rsq_trad", "mae", "rmse", "rsq_…
## $ .estimator <chr> "standard", "standard", "standard", "standard", "standard",…
## $ .estimate <dbl> 0.3214087, 0.7187623, 0.9158668, 0.2323321, 0.5805358, 0.74…
## $ .config <chr> "Preprocessor1_Model1", "Preprocessor1_Model1", "Preprocess…
glimpse(predicted_df_all_sites)
## Rows: 11,278
## Columns: 126
## $ non_brain_predicted <dbl> -0.01874527, -1.66706903, -0.6442…
## $ SUBJECTKEY <chr> "NDAR_INVCL18941F", "NDAR_INV4BAP…
## $ EVENTNAME <chr> "baseline_year_1_arm_1", "baselin…
## $ MRI_INFO_DEVICESERIALNUMBER <chr> "HASH6b4422a7", "HASH6b4422a7", "…
## $ SEX <fct> F, M, F, M, F, F, F, M, F, M, F, …
## $ INTERVIEW_AGE <dbl> 118, 118, 119, 114, 117, 131, 120…
## $ RACE_ETHNICITY <fct> Hispanic, Hispanic, Hispanic, His…
## $ REL_FAMILY_ID <fct> 9522, 9387, 9406, 9689, 9449, 947…
## $ ACS_RAKED_PROPENSITY_SCORE <dbl> 306.1648, 626.4339, 684.5424, 668…
## $ NIHTBX_FLANKER_UNCORRECTED <dbl> 102, 102, 92, 94, 98, 106, 100, 1…
## $ NIHTBX_CARDSORT_UNCORRECTED <dbl> 86, 98, 90, 81, 99, 109, 106, 95,…
## $ NIHTBX_PATTERN_UNCORRECTED <dbl> 97, 65, 101, 82, 86, 103, 101, 10…
## $ NIHTBX_PICVOCAB_UNCORRECTED <dbl> 87, 88, 74, 80, 78, 81, 92, 74, 7…
## $ NIHTBX_READING_UNCORRECTED <dbl> 92, 90, 86, 76, 88, 102, 99, 87, …
## $ NIHTBX_PICTURE_UNCORRECTED <dbl> 104, 91, 97, 101, 110, 106, 131, …
## $ PEA_RAVLT_LD_TRIAL_VII_TC <int> 7, 10, 5, 10, 14, 13, 12, 6, 7, 1…
## $ NIHTBX_LIST_UNCORRECTED <dbl> 101, 97, 86, 90, 97, 113, 120, 78…
## $ LMT_SCR_PERC_CORRECT <dbl> 0.50000, 0.43750, 0.34375, 0.4687…
## $ PEA_WISCV_TRS <int> 19, 19, 16, 16, 17, 17, 27, 12, 1…
## $ NIHTBX_FLUIDCOMP_UNCORRECTED <dbl> 96, 86, 89, 84, 96, 109, 115, 90,…
## $ NIHTBX_CRYST_UNCORRECTED <dbl> 89, 88, 78, 76, 82, 90, 95, 79, 7…
## $ NIHTBX_TOTALCOMP_UNCORRECTED <dbl> 90, 84, 80, 76, 86, 99, 105, 81, …
## $ CBCL_SCR_SYN_ANXDEP_R <dbl> 15, 8, 1, NA, 3, 0, 0, 0, 3, 0, 1…
## $ CBCL_SCR_SYN_WITHDEP_R <dbl> 5, 4, 1, NA, 0, 0, 0, 1, 1, 0, 1,…
## $ CBCL_SCR_SYN_SOMATIC_R <dbl> 8, 2, 0, NA, 2, 2, 0, 2, 1, 0, 1,…
## $ CBCL_SCR_SYN_SOCIAL_R <dbl> 9, 7, 0, NA, 2, 0, 0, 0, 2, 0, 3,…
## $ CBCL_SCR_SYN_THOUGHT_R <dbl> 8, 4, 0, NA, 2, 1, 0, 0, 1, 1, 0,…
## $ CBCL_SCR_SYN_ATTENTION_R <dbl> 14, 10, 0, NA, 0, 4, 0, 0, 4, 1, …
## $ CBCL_SCR_SYN_RULEBREAK_R <dbl> 9, 5, 0, NA, 0, 2, 0, 0, 0, 0, 3,…
## $ CBCL_SCR_SYN_AGGRESSIVE_R <dbl> 15, 10, 0, NA, 2, 7, 0, 0, 0, 0, …
## $ CBCL_SCR_SYN_INTERNAL_R <dbl> 28, 14, 2, NA, 5, 2, 0, 3, 5, 0, …
## $ CBCL_SCR_SYN_EXTERNAL_R <dbl> 24, 15, 0, NA, 2, 9, 0, 0, 0, 0, …
## $ CBCL_SCR_SYN_TOTPROB_R <dbl> 88, 57, 2, NA, 13, 17, 0, 5, 14, …
## $ CBCL_SCR_DSM5_DEPRESS_R <dbl> 6, 7, 0, NA, 2, 0, 0, 2, 0, 0, 1,…
## $ CBCL_SCR_DSM5_ANXDISORD_R <dbl> 10, 6, 1, NA, 0, 0, 0, 0, 3, 0, 2…
## $ CBCL_SCR_DSM5_SOMATICPR_R <dbl> 5, 2, 0, NA, 2, 1, 0, 2, 1, 0, 1,…
## $ CBCL_SCR_DSM5_ADHD_R <dbl> 13, 8, 0, NA, 1, 4, 0, 0, 2, 0, 4…
## $ CBCL_SCR_DSM5_OPPOSIT_R <dbl> 6, 5, 0, NA, 2, 6, 0, 0, 0, 0, 1,…
## $ CBCL_SCR_DSM5_CONDUCT_R <dbl> 11, 5, 0, NA, 0, 2, 0, 0, 0, 0, 1…
## $ CBCL_SCR_07_SCT_R <dbl> 2, 1, 0, NA, 0, 0, 0, 0, 0, 0, 1,…
## $ CBCL_SCR_07_OCD_R <dbl> 10, 4, 0, NA, 1, 0, 0, 0, 1, 0, 0…
## $ CBCL_SCR_07_STRESS_R <dbl> 13, 10, 1, NA, 1, 3, 0, 0, 2, 0, …
## $ ASR_SCR_PERSTR_T <dbl> 60, 53, 46, 40, 45, 42, 53, 34, 3…
## $ ASR_SCR_ANXDEP_T <dbl> 67, 67, 50, 52, 50, 50, 50, 53, 5…
## $ ASR_SCR_WITHDRAWN_T <dbl> 61, 67, 50, 54, 50, 51, 50, 50, 5…
## $ ASR_SCR_SOMATIC_T <dbl> 69, 69, 54, 70, 51, 50, 50, 63, 5…
## $ ASR_SCR_THOUGHT_T <dbl> 72, 62, 50, 50, 50, 50, 50, 54, 5…
## $ ASR_SCR_ATTENTION_T <dbl> 62, 66, 50, 56, 50, 50, 50, 52, 5…
## $ ASR_SCR_AGGRESSIVE_T <dbl> 75, 63, 50, 51, 54, 50, 50, 50, 5…
## $ ASR_SCR_RULEBREAK_T <dbl> 72, 71, 50, 50, 52, 50, 50, 50, 5…
## $ ASR_SCR_INTRUSIVE_T <dbl> 50, 68, 50, 51, 50, 50, 50, 50, 5…
## $ ASR_SCR_INTERNAL_T <dbl> 69, 71, 43, 60, 42, 40, 30, 55, 5…
## $ ASR_SCR_EXTERNAL_T <dbl> 70, 70, 32, 47, 50, 32, 32, 32, 4…
## $ ASR_SCR_TOTPROB_T <dbl> 66, 67, 31, 49, 41, 32, 25, 45, 4…
## $ ASR_SCR_DEPRESS_T <dbl> 62, 67, 50, 57, 51, 50, 50, 55, 5…
## $ ASR_SCR_ANXDISORD_T <dbl> 75, 73, 50, 55, 51, 50, 50, 63, 5…
## $ ASR_SCR_SOMATICPR_T <dbl> 70, 70, 58, 70, 51, 50, 50, 63, 5…
## $ ASR_SCR_AVOIDANT_T <dbl> 70, 64, 50, 54, 51, 58, 50, 51, 5…
## $ ASR_SCR_ADHD_T <dbl> 64, 69, 50, 52, 50, 50, 50, 50, 5…
## $ ASR_SCR_ANTISOCIAL_T <dbl> 73, 70, 50, 51, 52, 50, 50, 50, 5…
## $ ASR_SCR_INATTENTION_T <dbl> 58, 68, 50, 57, 50, 50, 50, 52, 5…
## $ ASR_SCR_HYPERACTIVE_T <dbl> 66, 67, 50, 50, 50, 50, 50, 50, 5…
## $ mania_parent <int> 5, 10, 0, NA, 7, 0, 0, 0, 0, 0, 0…
## $ BISAvg <dbl> 2.25, 1.50, 0.50, 0.50, 0.50, 1.7…
## $ BASRRAvg <dbl> 2.00, 3.00, 1.75, 0.25, 2.25, 2.2…
## $ BASDriveAvg <dbl> 0.50, 2.00, 0.75, 1.25, 0.75, 0.5…
## $ BASFunAvg <dbl> 1.75, 2.00, 1.50, 1.00, 0.25, 2.2…
## $ BASAllAvg <dbl> 1.4166667, 2.3333333, 1.3333333, …
## $ UPPS_Y_SS_NEGATIVE_URGENCY <int> 9, 6, 9, 6, 13, 5, 10, 9, 9, 6, 1…
## $ UPPS_Y_SS_LACK_OF_PLANNING <int> 8, 8, 5, 6, 5, 4, 8, 6, 4, 5, 7, …
## $ UPPS_Y_SS_SENSATION_SEEKING <int> 11, 10, 8, 10, 13, 8, 13, 13, 9, …
## $ UPPS_Y_SS_POSITIVE_URGENCY <int> 15, 8, 8, 10, 9, 6, 12, 9, 8, 4, …
## $ UPPS_Y_SS_LACK_OF_PERSEVERANCE <int> 6, 11, 4, 9, 6, 7, 4, 6, 7, 6, 9,…
## $ sleep_hours <int> 2, 2, 3, NA, 4, 2, 2, 3, 3, 3, 1,…
## $ sleep_disturb <int> 1, 1, 1, NA, 2, 1, 1, 2, 2, 2, 2,…
## $ sleep_initiate_maintain <int> 11, 8, 9, NA, 13, 12, 9, 15, 11, …
## $ sleep_breath <int> 4, 5, 3, NA, 3, 3, 4, 3, 7, 4, 3,…
## $ sleep_arousal <int> 4, 5, 3, NA, 3, 3, 3, 3, 3, 3, 3,…
## $ sleep_transition <int> 19, 10, 8, NA, 9, 7, 7, 10, 10, 6…
## $ sleep_somnolence <int> 11, 8, 5, NA, 5, 7, 5, 8, 6, 8, 8…
## $ sleep_hyperhydrosis <int> 2, 2, 2, NA, 2, 2, 2, 2, 2, 2, 3,…
## $ sleep_total <int> 51, 38, 30, NA, 35, 34, 30, 41, 3…
## $ matureGames_Screen <int> 0, 1, 0, 1, 1, 0, 0, 2, 0, 2, 1, …
## $ matureMovies_Screen <int> 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, …
## $ wkdySum_Screen <dbl> 1.75, 3.50, 1.75, 1.50, 2.00, 2.7…
## $ wkndSum_Screen <dbl> 2.00, 5.50, 1.75, 2.00, 2.00, 5.5…
## $ tobacco_before_preg <fct> 0, 0, 0, NA, 0, 0, 0, 0, 0, 0, 1,…
## $ tobacco_after_preg <fct> 0, 0, 0, NA, 0, 0, 0, 0, 0, 0, 0,…
## $ alcohol_before_preg <fct> 0, 0, 0, NA, 0, 1, 0, 0, 0, 0, 1,…
## $ alcohol_after_preg <fct> 0, 0, 0, NA, 0, 0, 0, 0, 0, 0, 0,…
## $ marijuana_before_preg <fct> 0, 0, 0, NA, 0, 0, 0, 0, 0, 0, 0,…
## $ marijuana_after_preg <fct> 0, 0, 0, NA, 0, 0, 0, 0, 0, 0, 0,…
## $ deveplopment_prematurity <fct> 0, 0, 0, NA, 0, 0, 0, 0, 0, 0, 0,…
## $ deveplopment_birth_complications <dbl> 0, 0, 0, NA, 0, 1, 0, 0, 0, 0, 0,…
## $ deveplopment_pregnancy_complications <dbl> 0, 0, 2, NA, 0, 0, 0, 1, 1, 0, NA…
## $ bilingual_status <fct> NA, NA, 1, 1, 1, NA, 1, 1, NA, NA…
## $ bilingual_degree <fct> NA, NA, 1, 1, 1, NA, 1, 1, NA, NA…
## $ bilingual_use <dbl> 0, 0, 6, 4, 5, 0, 3, 4, 0, 0, 2, …
## $ marital <fct> married, livingWithPartner, separ…
## $ education1stPar <int> 15, 6, 8, 12, 10, 19, 18, 13, 12,…
## $ education2ndPar <int> 15, 3, NA, NA, NA, 18, 15, 13, 15…
## $ educationAvg <dbl> 15.0, 4.5, 8.0, 12.0, 10.0, 18.5,…
## $ combinedIncome <int> 9, 3, NA, NA, 4, 10, NA, 6, 8, 4,…
## $ householdSize <int> 4, 5, NA, 3, 7, 5, 3, 7, 4, 4, 8,…
## $ econ_insecurities_sum <dbl> 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, …
## $ area_deprivation_index <dbl> 86.44, 102.27, 0.00, 97.47, 98.32…
## $ lead_risk <int> 7, 10, 10, 10, 10, 6, 6, 9, NA, 1…
## $ quartic_uniform_crime_reports <dbl> 24.28903, 24.28903, 24.28903, 24.…
## $ neighbo_safety_parent_sum <dbl> 10, 8, 7, 6, 8, 14, 12, 3, 9, 11,…
## $ neighbo_safety_child_sum <int> 4, 3, 4, 4, 3, 5, 5, 4, 2, 5, 4, …
## $ sumSchool_environment <dbl> 20, 21, 24, 23, 23, 22, 24, 21, 2…
## $ sumSchool_involvement <dbl> 15, 13, 16, 16, 16, 15, 12, 13, 1…
## $ sumSchool_disengagement <dbl> 2, 6, 2, 2, 2, 3, 2, 5, 2, 2, 2, …
## $ parent_monitor_mean <dbl> 4.4, 4.2, 4.6, 3.0, 4.8, 5.0, 3.8…
## $ fam_conflict_parent <dbl> 0, 4, 1, 6, 3, 2, 3, 3, 1, 0, 4, …
## $ fam_conflict_children <dbl> 0, 0, 1, 0, 1, 1, 1, 3, 4, 1, 3, …
## $ prosocial_parent_mean <dbl> 1.666667, 2.000000, 2.000000, NA,…
## $ prosocial_youth_mean <dbl> 1.666667, 1.333333, 2.000000, 1.0…
## $ phys_ind_daypweek_sum <dbl> 10, 0, 0, NA, 4, 0, 9, 0, 4, 0, 5…
## $ phys_team_daypweek_sum <dbl> 14, 0, 8, NA, 0, 12, 0, 0, 4, 6, …
## $ art_daypweek_sum <dbl> 4, 0, 0, NA, 0, 0, 0, 0, 0, 0, 0,…
## $ sport_act_all_daypweek_sum <dbl> 28, 0, 8, NA, 4, 12, 9, 0, 8, 6, …
## $ physc_act_days <int> 2, 1, 1, 3, 0, 7, 5, 7, 0, 1, 0, …
## $ SITE_ID_L <chr> "site01", "site01", "site01", "si…
## $ dup <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ gfactor <dbl> 0.19958234, -0.03410110, -0.85882…
glimpse(predicted_df_baked_all_sites)
## Rows: 11,278
## Columns: 80
## $ SITE_ID_L <chr> "site01", "site01", "site01", "si…
## $ non_brain_predicted <dbl> -0.01874527, -1.66706903, -0.6442…
## $ CBCL_SCR_SYN_ANXDEP_R <dbl> 4.0469948, 1.7752001, -0.4965946,…
## $ CBCL_SCR_SYN_WITHDEP_R <dbl> 2.31248684, 1.72912794, -0.020948…
## $ CBCL_SCR_SYN_SOMATIC_R <dbl> 3.3136168, 0.2523049, -0.7681324,…
## $ CBCL_SCR_SYN_SOCIAL_R <dbl> 3.2275942, 2.3519174, -0.7129514,…
## $ CBCL_SCR_SYN_THOUGHT_R <dbl> 2.8676630, 1.0635359, -0.7405912,…
## $ CBCL_SCR_SYN_ATTENTION_R <dbl> 3.131137152, 1.992712479, -0.8533…
## $ CBCL_SCR_SYN_RULEBREAK_R <dbl> 4.1567932, 2.0249091, -0.6399461,…
## $ CBCL_SCR_SYN_AGGRESSIVE_R <dbl> 2.6816012, 1.5377476, -0.7499598,…
## $ ASR_SCR_PERSTR_T <dbl> 1.287236908, 0.534889327, -0.2174…
## $ ASR_SCR_ANXDEP_T <dbl> 2.34195330, 2.34195330, -0.607354…
## $ ASR_SCR_WITHDRAWN_T <dbl> 1.59961503, 2.77322736, -0.552007…
## $ ASR_SCR_SOMATIC_T <dbl> 2.2898535, 2.2898535, -0.1289775,…
## $ ASR_SCR_THOUGHT_T <dbl> 3.7189976, 1.7655906, -0.5784979,…
## $ ASR_SCR_ATTENTION_T <dbl> 1.3590482, 2.0341371, -0.6662184,…
## $ ASR_SCR_AGGRESSIVE_T <dbl> 4.24679033, 1.88858580, -0.666135…
## $ ASR_SCR_RULEBREAK_T <dbl> 4.1150086, 3.9032372, -0.5439627,…
## $ ASR_SCR_INTRUSIVE_T <dbl> -0.4867646, 4.7207486, -0.4867646…
## $ mania_parent <dbl> 1.3241907, 3.1194834, -0.4711019,…
## $ BISAvg <dbl> 1.2209757, 0.1658362, -1.2410165,…
## $ BASRRAvg <dbl> -0.32251573, 1.28784986, -0.72510…
## $ BASDriveAvg <dbl> -0.69320511, 1.27454672, -0.36524…
## $ BASFunAvg <dbl> 0.4822646, 0.8601754, 0.1043539, …
## $ UPPS_Y_SS_NEGATIVE_URGENCY <dbl> 0.1875367, -0.9457830, 0.1875367,…
## $ UPPS_Y_SS_LACK_OF_PLANNING <dbl> 0.1041536, 0.1041536, -1.1588821,…
## $ UPPS_Y_SS_SENSATION_SEEKING <dbl> 0.44795430, 0.07466475, -0.671914…
## $ UPPS_Y_SS_POSITIVE_URGENCY <dbl> 2.3587127608, -0.0005867521, -0.0…
## $ UPPS_Y_SS_LACK_OF_PERSEVERANCE <dbl> -0.4633063, 1.7560254, -1.3510390…
## $ sleep_hours <dbl> 0.3579279, 0.3579279, 1.5884740, …
## $ sleep_disturb <dbl> -0.95463743, -0.95463743, -0.9546…
## $ sleep_initiate_maintain <dbl> -0.20835221, -1.00678383, -0.7406…
## $ sleep_breath <dbl> 0.18492738, 0.98843794, -0.618583…
## $ sleep_arousal <dbl> 0.6055256, 1.6895942, -0.4785430,…
## $ sleep_transition <dbl> 4.10587162, 0.68697951, -0.072774…
## $ sleep_somnolence <dbl> 1.64482380, 0.42245781, -0.799908…
## $ sleep_hyperhydrosis <dbl> -0.3697340, -0.3697340, -0.369734…
## $ matureGames_Screen <dbl> -0.6484096, 0.5010773, -0.6484096…
## $ matureMovies_Screen <dbl> -0.5908421, -0.5908421, -0.590842…
## $ wkdySum_Screen <dbl> -0.55111237, 0.01488049, -0.55111…
## $ wkndSum_Screen <dbl> -0.7215559, 0.2427317, -0.7904336…
## $ deveplopment_birth_complications <dbl> -0.4961850, -0.4961850, -0.496185…
## $ deveplopment_pregnancy_complications <dbl> -0.6000502, -0.6000502, 1.3712680…
## $ bilingual_use <dbl> -0.54934102, -0.54934102, 3.20543…
## $ educationAvg <dbl> -0.566530119, -4.601676348, -3.25…
## $ combinedIncome <dbl> 0.7220577, -1.7937491, -0.9551468…
## $ householdSize <dbl> -0.45720752, 0.19578002, 0.065182…
## $ econ_insecurities_sum <dbl> -0.4251869, 1.4018488, -0.4251869…
## $ area_deprivation_index <dbl> -0.278164178, 0.367542661, -3.804…
## $ lead_risk <dbl> 0.66052285, 1.63507717, 1.6350771…
## $ quartic_uniform_crime_reports <dbl> 2.33990202, 2.33990202, 2.3399020…
## $ neighbo_safety_parent_sum <dbl> -0.60584355, -1.29867284, -1.6450…
## $ neighbo_safety_child_sum <dbl> -0.0339937, -0.9524127, -0.033993…
## $ sumSchool_environment <dbl> 0.02510678, 0.38090575, 1.4483026…
## $ sumSchool_involvement <dbl> 0.82448335, -0.02310619, 1.248278…
## $ sumSchool_disengagement <dbl> -1.1981619, 1.5477542, -1.1981619…
## $ parent_monitor_mean <dbl> 0.03098195, -0.35734179, 0.419305…
## $ fam_conflict_parent <dbl> -1.2981374, 0.7390790, -0.7888333…
## $ fam_conflict_children <dbl> -1.04553814, -1.04553814, -0.5348…
## $ prosocial_parent_mean <dbl> -0.2092621, 0.6193245, 0.6193245,…
## $ prosocial_youth_mean <dbl> -0.02414115, -0.92288397, 0.87460…
## $ phys_ind_daypweek_sum <dbl> 0.91005294, -0.87793090, -0.87793…
## $ phys_team_daypweek_sum <dbl> 0.76237360, -1.07259390, -0.02404…
## $ art_daypweek_sum <dbl> -0.1555468, -0.7995276, -0.799527…
## $ physc_act_days <dbl> -0.6571645, -1.0897235, -1.089723…
## $ gfactor <dbl> 0.2542287, -0.0434381, -1.0939692…
## $ tobacco_after_preg_X1 <dbl> -0.2383455, -0.2383455, -0.238345…
## $ alcohol_after_preg_X1 <dbl> -0.1663372, -0.1663372, -0.166337…
## $ marijuana_after_preg_X1 <dbl> -0.1473317, -0.1473317, -0.147331…
## $ deveplopment_prematurity_X1 <dbl> -0.4807505, -0.4807505, -0.480750…
## $ SEX_M <dbl> -1.0488617, 0.9533272, -1.0488617…
## $ RACE_ETHNICITY_Black <dbl> -0.4206907, -0.4206907, -0.420690…
## $ RACE_ETHNICITY_Hispanic <dbl> 2.0817662, 2.0817662, 2.0817662, …
## $ RACE_ETHNICITY_Asian <dbl> -0.1447151, -0.1447151, -0.144715…
## $ RACE_ETHNICITY_Other <dbl> -0.3445854, -0.3445854, -0.344585…
## $ marital_widowed <dbl> -0.08909534, -0.08909534, -0.0890…
## $ marital_divorced <dbl> -0.3175018, -0.3175018, -0.317501…
## $ marital_separated <dbl> -0.1992563, -0.1992563, 5.0182014…
## $ marital_neverMarried <dbl> -0.3708123, -0.3708123, -0.370812…
## $ marital_livingWithPartner <dbl> -0.2396301, 4.1727160, -0.2396301…
elastic_net_final_metrics_all_sites %>%
group_by(.metric) %>%
summarise(mean_estimate = mean(.estimate),
sd_estimate = sd(.estimate))
## # A tibble: 3 × 3
## .metric mean_estimate sd_estimate
## <chr> <dbl> <dbl>
## 1 mae 0.653 0.0392
## 2 rmse 0.829 0.0498
## 3 rsq_trad 0.282 0.0747
predicted_df_all_sites %>%
group_by(SITE_ID_L) %>%
dplyr::summarize(cor_non_brain_g = cor(non_brain_predicted,gfactor)) %>%
ungroup() %>%
dplyr::summarize(mean_cor = mean(cor_non_brain_g),
sd_cor = sd(cor_non_brain_g))
## # A tibble: 1 × 2
## mean_cor sd_cor
## <dbl> <dbl>
## 1 0.534 0.0680
predicted_df_all_sites %>%
ggplot(mapping = aes(x = scale(non_brain_predicted),
y = scale(gfactor))) +
geom_point(alpha = .3) +
geom_smooth(method = 'lm') +
labs(color = "") +
ylab("observed g-factor (Z)") +
xlab("out-of-site g-factor (Z) predicted by\nsocio-demographic-psychological factors") +
theme_classic(base_size = 24)
## `geom_smooth()` using formula 'y ~ x'
elastic_net_model_val_df_list<- map(elastic_net_model_val_list, .f = tidy)
## Loading required package: Matrix
##
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
##
## expand, pack, unpack
## Loaded glmnet 4.1-3
elastic_net_model_val_df <- tibble(
term = elastic_net_model_val_df_list[[1]]$term,
mean_estimate = rowMeans(sapply(elastic_net_model_val_df_list, "[[", "estimate")),
sd_estimate = matrixStats::rowSds(sapply(elastic_net_model_val_df_list, "[[", "estimate")))
#load cont names used in ASEG
NonBrainFeaturesRead<-tibble::as_tibble(read.csv(paste0(utilFold,"NonBrainFeaturesRead.csv")))
elastic_net_model_val_df_named <- NonBrainFeaturesRead %>% rename(term = original) %>%
full_join(elastic_net_model_val_df, by="term") %>%
rename(original = term) %>% rename(term = readable)
elastic_net_model_val_df_named %>%
filter(term != "(Intercept)") %>%
# group_by(mean_estimate > 0) %>%
top_n(5, abs(mean_estimate)) %>%
ungroup() %>%
ggplot(aes(fct_reorder(term, mean_estimate), mean_estimate, fill = mean_estimate > 0)) +
geom_col(alpha = 0.8, show.legend = FALSE) +
geom_errorbar(aes(ymin=mean_estimate-sd_estimate, ymax=mean_estimate+sd_estimate), width=.2,
position=position_dodge(.9)) +
labs(y="Std Coefficients\nAcross Folds (M ±SD)") +
coord_flip() +
theme_minimal(base_size = 17) +
labs(x = NULL,
title = "Socio-Demographic\n& Psychological features\nthat Predict G-Factor\nWith |Std Coeffients| ≥ .1")
## top 20
elastic_net_model_val_df_list<- map(elastic_net_model_val_list, .f = tidy)
## Loading required package: Matrix
##
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
##
## expand, pack, unpack
## Loaded glmnet 4.1-3
elastic_net_model_val_df <- tibble(
term = elastic_net_model_val_df_list[[1]]$term,
mean_estimate = rowMeans(sapply(elastic_net_model_val_df_list, "[[", "estimate")),
sd_estimate = matrixStats::rowSds(sapply(elastic_net_model_val_df_list, "[[", "estimate")))
#load cont names used in ASEG
NonBrainFeaturesRead<-tibble::as_tibble(read.csv(paste0(utilFold,"NonBrainFeaturesRead.csv")))
elastic_net_model_val_df_named <- NonBrainFeaturesRead %>% rename(term = original) %>%
full_join(elastic_net_model_val_df, by="term") %>%
rename(original = term) %>% rename(term = readable)
elastic_net_model_val_df_named %>%
filter(term != "(Intercept)") %>%
# group_by(mean_estimate > 0) %>%
top_n(20, abs(mean_estimate)) %>%
ungroup() %>%
ggplot(aes(fct_reorder(term, mean_estimate), mean_estimate, fill = mean_estimate > 0)) +
geom_col(alpha = 0.8, show.legend = FALSE) +
geom_errorbar(aes(ymin=mean_estimate-sd_estimate, ymax=mean_estimate+sd_estimate), width=.2,
position=position_dodge(.9)) +
labs(y="Coefficients Across Folds (M ±SD)") +
coord_flip() +
theme_minimal(base_size = 17) +
labs(x = NULL,
title = "Top 20 Socio-Demographic\n& Psychological features\nthat Predict G-Factor")
and look at correlations among observed gfactor and predicted gfactor from brain and non-brain variables (collapsed across sites)
brainPredicted <- read_csv("~/OneDrive - University of Otago/ABCD3/Analysis/FeatureExploration/brainData/All_pred_results05_01_2021.csv")
## New names:
## * `` -> ...1
## Rows: 10624 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (2): SUBJECTKEY, SITE_ID_L
## dbl (8): ...1, Stacked, Nback, SST, MID, rsmri, smri, DTI
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#load data and create dummy variable for race and sex
predicted_brain_no_brain_all_sites <- full_join(x = predicted_df_all_sites,
y = brainPredicted,
by = c('SUBJECTKEY', 'SITE_ID_L')) %>%
rename(predicted_G_brain = Stacked) %>%
rename(predicted_G_non_brain = non_brain_predicted) %>%
rename(observed_G = gfactor) %>%
fastDummies::dummy_cols(
select_columns = c('SEX', 'RACE_ETHNICITY'),
remove_first_dummy = TRUE) %>%
mutate(race_non_white = ifelse(RACE_ETHNICITY == "White", 0,1))
#glimpse(predicted_brain_no_brain_all_sites)
predicted_brain_no_brain_all_sites %>%
select(observed_G,predicted_G_brain,predicted_G_non_brain) %>%
PerformanceAnalytics::chart.Correlation(histogram=TRUE, pch=19)
brain is mediator
g-factor is the dv
set.seed(1234)
model_brain_soc_psyc<-'
observed_G~b*predicted_G_brain+c*predicted_G_non_brain
predicted_G_brain~a*predicted_G_non_brain
#indirect and total effects between
ab:=a*b
total:=ab+c
prop:=ab/total
'
fit_model_brain_soc_psyc<-lavaan::sem(model_brain_soc_psyc,
data=predicted_brain_no_brain_all_sites,
test = "bollen.stine",
se = "bootstrap", bootstrap = 5000)
lavaan::summary(fit_model_brain_soc_psyc,
standardized = TRUE,
rsquare = TRUE,
fit.measures = TRUE)
## lavaan 0.6-9 ended normally after 17 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 5
##
## Used Total
## Number of observations 10628 11278
##
## Model Test User Model:
##
## Test statistic 0.000
## Degrees of freedom 0
##
## Test statistic 0.000
## Degrees of freedom 0
##
## Model Test Baseline Model:
##
## Test statistic 7012.371
## Degrees of freedom 3
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 1.000
## Tucker-Lewis Index (TLI) 1.000
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -15257.212
## Loglikelihood unrestricted model (H1) -15257.212
##
## Akaike (AIC) 30524.424
## Bayesian (BIC) 30560.781
## Sample-size adjusted Bayesian (BIC) 30544.891
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.000
## 90 Percent confidence interval - lower 0.000
## 90 Percent confidence interval - upper 0.000
## P-value RMSEA <= 0.05 NA
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.000
##
## Parameter Estimates:
##
## Standard errors Bootstrap
## Number of requested bootstrap draws 5000
## Number of successful bootstrap draws 5000
##
## Regressions:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## observed_G ~
## prdctd_G_b (b) 0.486 0.015 33.291 0.000 0.486 0.275
## prdctd_G__ (c) 0.635 0.012 52.839 0.000 0.635 0.460
## predicted_G_brain ~
## prdctd_G__ (a) 0.309 0.007 45.962 0.000 0.309 0.395
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .observed_G 0.371 0.005 67.740 0.000 0.371 0.613
## .predictd_G_brn 0.163 0.002 84.655 0.000 0.163 0.844
##
## R-Square:
## Estimate
## observed_G 0.387
## predictd_G_brn 0.156
##
## Defined Parameters:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## ab 0.150 0.006 27.208 0.000 0.150 0.109
## total 0.785 0.012 67.765 0.000 0.785 0.569
## prop 0.191 0.007 26.753 0.000 0.191 0.191
fit_model_brain_soc_psyc_para <- lavaan::parameterEstimates(fit_model_brain_soc_psyc,
boot.ci.type="bca.simple",
level=0.95,
ci=TRUE,
standardized = TRUE)
kable(fit_model_brain_soc_psyc_para)
lhs | op | rhs | label | est | se | z | pvalue | ci.lower | ci.upper | std.lv | std.all | std.nox |
---|---|---|---|---|---|---|---|---|---|---|---|---|
observed_G | ~ | predicted_G_brain | b | 0.4855600 | 0.0145851 | 33.29148 | 0 | 0.4571685 | 0.5142848 | 0.4855600 | 0.2747331 | 0.2747331 |
observed_G | ~ | predicted_G_non_brain | c | 0.6348281 | 0.0120144 | 52.83872 | 0 | 0.6120880 | 0.6585293 | 0.6348281 | 0.4601710 | 0.8163206 |
predicted_G_brain | ~ | predicted_G_non_brain | a | 0.3086663 | 0.0067156 | 45.96233 | 0 | 0.2960008 | 0.3219493 | 0.3086663 | 0.3954433 | 0.7014969 |
observed_G | ~~ | observed_G | 0.3705897 | 0.0054708 | 67.73981 | 0 | 0.3597279 | 0.3812804 | 0.3705897 | 0.6127772 | 0.6127772 | |
predicted_G_brain | ~~ | predicted_G_brain | 0.1633338 | 0.0019294 | 84.65457 | 0 | 0.1596145 | 0.1671936 | 0.1633338 | 0.8436246 | 0.8436246 | |
predicted_G_non_brain | ~~ | predicted_G_non_brain | 0.3177730 | 0.0000000 | NA | NA | 0.3177730 | 0.3177730 | 0.3177730 | 1.0000000 | 0.3177730 | |
ab | := | a*b | ab | 0.1498760 | 0.0055085 | 27.20826 | 0 | 0.1395263 | 0.1611217 | 0.1498760 | 0.1086414 | 0.1927244 |
total | := | ab+c | total | 0.7847041 | 0.0115797 | 67.76544 | 0 | 0.7620716 | 0.8074552 | 0.7847041 | 0.5688123 | 1.0090450 |
prop | := | ab/total | prop | 0.1909968 | 0.0071391 | 26.75344 | 0 | 0.1775028 | 0.2055419 | 0.1909968 | 0.1909968 | 0.1909968 |
prsScoreFold = paste0("~/OneDrive - University of Otago/ABCD3/genetics/data-bundle-abcd3.0/abcd-release-3.0_chrall_0.8-mac5-hg19-eur-qc-v9-genotypes/")
GeneticQCfold ="~/OneDrive - University of Otago/ABCD3/ABCD3GenotypeWithoutImputed/genomics_sample03/ABCD_genotype/"
Geneticfold ="~/OneDrive - University of Otago/ABCD3/genetics/data-bundle-abcd3.0-afr/"
batch_info <- read.delim("~/OneDrive - University of Otago/ABCD3/ABCD3GenotypeWithoutImputed/genomics_sample03/ABCD_genotype/ABCD_release3.0_.batch_info.txt") %>% rename(SUBJECTKEY=abcd.id_redcap, batch = Axiom_Plate)
batch_info$SUBJECTKEY[which(batch_info$SUBJECTKEY=="`NDAR_INVF3FYXH1G")] <-"NDAR_INVF3FYXH1G"
eur_bim2unrelated <- read.csv("~/OneDrive - University of Otago/ABCD3/genetics/data-bundle-abcd3.0-afr/abcd-release-3.0_chrall_0.8-mac5-hg19-eur-qc-v9/abcd-release-3.0_chrall_0.8-mac5-hg19-eur-qc-v9_bim2unrelated.keep", header = FALSE) %>%
mutate(SUBJECTKEY = str_remove_all(V1, "ABCD\tAB0[:digit:]{6}_")) %>% select(SUBJECTKEY) %>%
mutate(EuNotRelated = 1)
eur_bim2unrelated$SUBJECTKEY[which(eur_bim2unrelated$SUBJECTKEY=="`NDAR_INVF3FYXH1G")] <-"NDAR_INVF3FYXH1G"
SUBJ_QC_BAD <- c("NDAR_INVA7RNTEHU", "NDAR_INVV7NEVHLK")
badImputed <- tibble(SUBJECTKEY = SUBJ_QC_BAD,
SUBJ_QC_BAD = c(1,1))
vision_idx <- tibble::as_tibble(read.csv(paste0(dataFold,"ABCD_SVS01_DATA_TABLE.CSV"))) %>%
filter(EVENTNAME =="baseline_year_1_arm_1") %>%
mutate(visionProb = ifelse(SNELLEN_VA_Y == 0 | SNELLEN_VA_Y == 1 | VIS_FLG == 2, 1, 0))
PRSQcEuNotRelated <- plyr::join_all(list(batch_info, eur_bim2unrelated, badImputed,vision_idx), by='SUBJECTKEY', type='full')
PRSQcEuNotRelated %>%count(EuNotRelated==1,batch!=461, is.na(SUBJ_QC_BAD),visionProb !=1 |is.na(visionProb)) %>% knitr::kable()
EuNotRelated == 1 | batch != 461 | is.na(SUBJ_QC_BAD) | visionProb != 1 | is.na(visionProb) | n |
---|---|---|---|---|
TRUE | FALSE | TRUE | TRUE | 32 |
TRUE | TRUE | TRUE | FALSE | 8 |
TRUE | TRUE | TRUE | TRUE | 4814 |
NA | FALSE | TRUE | TRUE | 50 |
NA | TRUE | TRUE | FALSE | 20 |
NA | TRUE | TRUE | TRUE | 6175 |
NA | NA | FALSE | TRUE | 2 |
NA | NA | TRUE | FALSE | 3 |
NA | NA | TRUE | TRUE | 810 |
finalParticipantNum <- PRSQcEuNotRelated %>%filter(EuNotRelated==1,batch!=461, is.na(SUBJ_QC_BAD),visionProb !=1 |is.na(visionProb)) %>% nrow()
leeCognition <- tibble::as_tibble(read.table(paste0(prsScoreFold,"lee-wedow-okbay-2018-cognitive-gwas/abcd-release-3.0_chrall_0.8-mac5-hg19-eur-qc-v9-genotypes-lee-wedow-okbay-2018-cognitive-gwas-profiles.csv"),header = TRUE)) %>%
rename(SUBJECTKEY = iid) %>% mutate(SUBJECTKEY = str_remove_all(SUBJECTKEY, "AB[:digit:]{7}_"))
leeCognition$SUBJECTKEY[which(leeCognition$SUBJECTKEY=="`NDAR_INVF3FYXH1G")] <-"NDAR_INVF3FYXH1G"
leeCognitionOri <- leeCognition %>% select(matches('p1|p5')) %>% colnames()
leeCognitionNew <- paste0("leeCognition",leeCognitionOri)
leeCognition.renamed <- leeCognition %>% rename_at(vars(all_of(leeCognitionOri )), ~ leeCognitionNew)
predicted_brain_no_brain_all_sites_leeCog <- plyr::join_all(list(predicted_brain_no_brain_all_sites, leeCognition.renamed, PRSQcEuNotRelated), by='SUBJECTKEY', type='full')
predicted_brain_no_brain_all_sites_leeCog <- predicted_brain_no_brain_all_sites_leeCog[,!duplicated(colnames(predicted_brain_no_brain_all_sites_leeCog))]
predicted_brain_no_brain_all_sites_leeCog <- tibble::rowid_to_column(predicted_brain_no_brain_all_sites_leeCog, "ID") %>%
filter(EuNotRelated==1,batch!=461, is.na(SUBJ_QC_BAD),visionProb !=1 |is.na(visionProb)) %>%
mutate(SEXnum = ifelse(SEX == "F",1,0))
predicted_brain_no_brain_all_sites_leeCog_scaled <- predicted_brain_no_brain_all_sites_leeCog %>%
mutate_at(scale, .vars = vars(c(ends_with("_score")&starts_with("lee"),
starts_with("pc"),
observed_G,predicted_G_brain)), center = TRUE, scale=TRUE)
predicted_brain_no_brain_all_sites_leeCog_mulimodalscaled <- predicted_brain_no_brain_all_sites_leeCog %>%
drop_na(Nback,SST,MID,rsmri,smri,DTI) %>%
mutate_at(scale, .vars = vars(c(ends_with("_score")&starts_with("lee"),
starts_with("pc"),
observed_G,
Nback, SST, MID, rsmri, smri, DTI)), center = TRUE, scale=TRUE)
calc_pearson_conflint_low <- function(vec_a, vec_b){
test_res <- cor.test(vec_a, vec_b)
return(test_res$conf.int[[1]])
}
calc_pearson_conflint_high <- function(vec_a, vec_b){
test_res <- cor.test(vec_a, vec_b)
return(test_res$conf.int[[2]])
}
leeCog_ci_low <- predicted_brain_no_brain_all_sites_leeCog %>%
select(ends_with("_score")&starts_with("lee"),observed_G) %>%
corrr::colpair_map(calc_pearson_conflint_low) %>% select(term,observed_G) %>%
filter(term != "observed_G") %>% rename(observed_G_ci_low = observed_G)
leeCog_ci_high <- predicted_brain_no_brain_all_sites_leeCog %>%
select(ends_with("_score")&starts_with("lee"),observed_G) %>%
corrr::colpair_map(calc_pearson_conflint_high) %>% select(term,observed_G) %>%
filter(term != "observed_G") %>% rename(observed_G_ci_high = observed_G)
leeCog_corr <- predicted_brain_no_brain_all_sites_leeCog %>%
select(ends_with("_score")&starts_with("lee"),observed_G) %>%
corrr::correlate() %>% select(term,observed_G) %>%
filter(term != "observed_G")
##
## Correlation method: 'pearson'
## Missing treated using: 'pairwise.complete.obs'
plyr::join_all(list(leeCog_corr,leeCog_ci_low,leeCog_ci_high),
by = 'term', type = "full", match = "all") %>%
bind_cols(Threshold = c(".1",".01",".001",".0001",".00001",".000001",".0000001",".00000001",".5",".05")) %>%
arrange(desc(Threshold)) %>%
ggplot(aes(x = Threshold, y = observed_G)) +
geom_col(alpha = 0.8, show.legend = FALSE) +
geom_errorbar(aes(ymin = observed_G_ci_low, ymax = observed_G_ci_high), width = 0.2) +
labs(y="Pearson Correlation with CI95%") +
coord_flip() +
theme_minimal(base_size = 20) +
labs(x = "PGS Threshold at p<",
title = "Correlation between the G-Factor\nand PGS of Cogntive Ability")
predicted_brain_no_brain_all_sites_leeCog %>%
ggplot(mapping = aes(x = leeCognitionp1e_2_score,
y = scale(observed_G))) +
geom_point(alpha = .3) +
geom_smooth(method = 'lm') +
labs(color = "") +
ylab("observed g-factor (Z)") +
xlab("PGS of Cogntive Ability\nat p<.01 PGS Threshold") +
theme_classic(base_size = 24)
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 204 rows containing non-finite values (stat_smooth).
## Warning: Removed 204 rows containing missing values (geom_point).
cor.test(predicted_brain_no_brain_all_sites_leeCog$leeCognitionp1e_2_score,
predicted_brain_no_brain_all_sites_leeCog$observed_G)
##
## Pearson's product-moment correlation
##
## data: predicted_brain_no_brain_all_sites_leeCog$leeCognitionp1e_2_score and predicted_brain_no_brain_all_sites_leeCog$observed_G
## t = 14.528, df = 4609, p-value < 0.00000000000000022
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1814861 0.2366902
## sample estimates:
## cor
## 0.2092549
brain is mediator
g-factor is the dv
## treat as if there is no cluster
set.seed(1234)
leecog_lavaan <-'
observed_G~b*predicted_G_brain+c*leeCognitionp1e_2_score
predicted_G_brain~a*leeCognitionp1e_2_score
observed_G~pc1 + pc2 + pc3 + pc4
predicted_G_brain~pc1 + pc2 + pc3 + pc4
#indirect and total effects between
ab:=a*b
total:=ab+c
prop:=ab/total
'
fit_leecog_lavaan <- lavaan::sem(leecog_lavaan,
data = predicted_brain_no_brain_all_sites_leeCog_scaled,
test = "bollen.stine",
se = "bootstrap", bootstrap = 5000)
lavaan::summary(fit_leecog_lavaan ,
standardized = TRUE,
rsquare = TRUE,
fit.measures = TRUE)
## lavaan 0.6-9 ended normally after 26 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 13
##
## Used Total
## Number of observations 4389 4815
##
## Model Test User Model:
##
## Test statistic 0.000
## Degrees of freedom 0
##
## Test statistic 0.000
## Degrees of freedom 0
##
## Model Test Baseline Model:
##
## Test statistic 851.124
## Degrees of freedom 11
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 1.000
## Tucker-Lewis Index (TLI) 1.000
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -11988.454
## Loglikelihood unrestricted model (H1) -11988.454
##
## Akaike (AIC) 24002.908
## Bayesian (BIC) 24085.937
## Sample-size adjusted Bayesian (BIC) 24044.628
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.000
## 90 Percent confidence interval - lower 0.000
## 90 Percent confidence interval - upper 0.000
## P-value RMSEA <= 0.05 NA
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.000
##
## Parameter Estimates:
##
## Standard errors Bootstrap
## Number of requested bootstrap draws 5000
## Number of successful bootstrap draws 5000
##
## Regressions:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## observed_G ~
## prdctd_G_b (b) 0.342 0.014 24.851 0.000 0.342 0.345
## lCgntn1_2_ (c) 0.174 0.014 12.220 0.000 0.174 0.175
## predicted_G_brain ~
## lCgntn1_2_ (a) 0.094 0.015 6.333 0.000 0.094 0.094
## observed_G ~
## pc1 0.125 0.060 2.093 0.036 0.125 0.124
## pc2 -0.247 0.198 -1.250 0.211 -0.247 -0.069
## pc3 0.005 0.104 0.045 0.964 0.005 0.005
## pc4 -0.020 0.119 -0.170 0.865 -0.020 -0.021
## predicted_G_brain ~
## pc1 0.008 0.051 0.148 0.882 0.008 0.007
## pc2 -0.033 0.169 -0.196 0.845 -0.033 -0.009
## pc3 -0.015 0.079 -0.190 0.849 -0.015 -0.016
## pc4 -0.005 0.122 -0.040 0.968 -0.005 -0.005
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .observed_G 0.816 0.019 43.411 0.000 0.816 0.831
## .predictd_G_brn 0.991 0.017 57.384 0.000 0.991 0.991
##
## R-Square:
## Estimate
## observed_G 0.169
## predictd_G_brn 0.009
##
## Defined Parameters:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## ab 0.032 0.005 6.089 0.000 0.032 0.032
## total 0.207 0.015 13.611 0.000 0.207 0.208
## prop 0.156 0.024 6.393 0.000 0.156 0.156
fit_leecog_lavaan_para <- lavaan::parameterEstimates(fit_leecog_lavaan,
boot.ci.type="bca.simple",
level=0.95,
ci=TRUE,
standardized = TRUE)
kable(fit_leecog_lavaan_para)
lhs | op | rhs | label | est | se | z | pvalue | ci.lower | ci.upper | std.lv | std.all | std.nox |
---|---|---|---|---|---|---|---|---|---|---|---|---|
observed_G | ~ | predicted_G_brain | b | 0.3421572 | 0.0137684 | 24.8509171 | 0.0000000 | 0.3154736 | 0.3689894 | 0.3421572 | 0.3453233 | 0.3453233 |
observed_G | ~ | leeCognitionp1e_2_score | c | 0.1743477 | 0.0142668 | 12.2204832 | 0.0000000 | 0.1472803 | 0.2017802 | 0.1743477 | 0.1751125 | 0.1759811 |
predicted_G_brain | ~ | leeCognitionp1e_2_score | a | 0.0944815 | 0.0149186 | 6.3331215 | 0.0000000 | 0.0662443 | 0.1245356 | 0.0944815 | 0.0940259 | 0.0944923 |
observed_G | ~ | pc1 | 0.1249980 | 0.0597175 | 2.0931528 | 0.0363355 | 0.0042824 | 0.2391465 | 0.1249980 | 0.1238580 | 0.1261690 | |
observed_G | ~ | pc2 | -0.2474684 | 0.1979319 | -1.2502706 | 0.2112007 | -0.6549932 | 0.1144279 | -0.2474684 | -0.0693871 | -0.2497868 | |
observed_G | ~ | pc3 | 0.0046927 | 0.1035110 | 0.0453348 | 0.9638404 | -0.1527567 | 0.2852511 | 0.0046927 | 0.0049345 | 0.0047366 | |
observed_G | ~ | pc4 | -0.0202014 | 0.1187176 | -0.1701633 | 0.8648817 | -0.3187973 | 0.1561772 | -0.0202014 | -0.0213472 | -0.0203906 | |
predicted_G_brain | ~ | pc1 | 0.0075282 | 0.0508248 | 0.1481203 | 0.8822479 | -0.0877917 | 0.1121372 | 0.0075282 | 0.0073911 | 0.0075290 | |
predicted_G_brain | ~ | pc2 | -0.0330395 | 0.1686961 | -0.1958523 | 0.8447257 | -0.3785987 | 0.2795089 | -0.0330395 | -0.0091789 | -0.0330433 | |
predicted_G_brain | ~ | pc3 | -0.0149924 | 0.0788559 | -0.1901241 | 0.8492119 | -0.2187669 | 0.1473727 | -0.0149924 | -0.0156206 | -0.0149941 | |
predicted_G_brain | ~ | pc4 | -0.0049251 | 0.1217863 | -0.0404406 | 0.9677419 | -0.1393776 | 0.3776521 | -0.0049251 | -0.0051567 | -0.0049257 | |
observed_G | ~~ | observed_G | 0.8160268 | 0.0187978 | 43.4108302 | 0.0000000 | 0.7822946 | 0.8559610 | 0.8160268 | 0.8313882 | 0.8313882 | |
predicted_G_brain | ~~ | predicted_G_brain | 0.9905535 | 0.0172619 | 57.3837648 | 0.0000000 | 0.9589689 | 1.0272917 | 0.9905535 | 0.9907792 | 0.9907792 | |
leeCognitionp1e_2_score | ~~ | leeCognitionp1e_2_score | 0.9901527 | 0.0000000 | NA | NA | 0.9901527 | 0.9901527 | 0.9901527 | 1.0000000 | 0.9901527 | |
leeCognitionp1e_2_score | ~~ | pc1 | 0.1164586 | 0.0000000 | NA | NA | 0.1164586 | 0.1164586 | 0.1164586 | 0.1192200 | 0.1164586 | |
leeCognitionp1e_2_score | ~~ | pc2 | 0.0298778 | 0.0000000 | NA | NA | 0.0298778 | 0.0298778 | 0.0298778 | 0.1080907 | 0.0298778 | |
leeCognitionp1e_2_score | ~~ | pc3 | -0.0334960 | 0.0000000 | NA | NA | -0.0334960 | -0.0334960 | -0.0334960 | -0.0323121 | -0.0334960 | |
leeCognitionp1e_2_score | ~~ | pc4 | 0.0200220 | 0.0000000 | NA | NA | 0.0200220 | 0.0200220 | 0.0200220 | 0.0192197 | 0.0200220 | |
pc1 | ~~ | pc1 | 0.9637024 | 0.0000000 | NA | NA | 0.9637024 | 0.9637024 | 0.9637024 | 1.0000000 | 0.9637024 | |
pc1 | ~~ | pc2 | 0.2553123 | 0.0000000 | NA | NA | 0.2553123 | 0.2553123 | 0.2553123 | 0.9362483 | 0.2553123 | |
pc1 | ~~ | pc3 | -0.0813157 | 0.0000000 | NA | NA | -0.0813157 | -0.0813157 | -0.0813157 | -0.0795109 | -0.0813157 | |
pc1 | ~~ | pc4 | 0.0206747 | 0.0000000 | NA | NA | 0.0206747 | 0.0206747 | 0.0206747 | 0.0201167 | 0.0206747 | |
pc2 | ~~ | pc2 | 0.0771646 | 0.0000000 | NA | NA | 0.0771646 | 0.0771646 | 0.0771646 | 1.0000000 | 0.0771646 | |
pc2 | ~~ | pc3 | 0.0266052 | 0.0000000 | NA | NA | 0.0266052 | 0.0266052 | 0.0266052 | 0.0919352 | 0.0266052 | |
pc2 | ~~ | pc4 | 0.0041940 | 0.0000000 | NA | NA | 0.0041940 | 0.0041940 | 0.0041940 | 0.0144216 | 0.0041940 | |
pc3 | ~~ | pc3 | 1.0853069 | 0.0000000 | NA | NA | 1.0853069 | 1.0853069 | 1.0853069 | 1.0000000 | 1.0853069 | |
pc3 | ~~ | pc4 | -0.0169518 | 0.0000000 | NA | NA | -0.0169518 | -0.0169518 | -0.0169518 | -0.0155427 | -0.0169518 | |
pc4 | ~~ | pc4 | 1.0960262 | 0.0000000 | NA | NA | 1.0960262 | 1.0960262 | 1.0960262 | 1.0000000 | 1.0960262 | |
ab | := | a*b | ab | 0.0323275 | 0.0053094 | 6.0887242 | 0.0000000 | 0.0225296 | 0.0432952 | 0.0323275 | 0.0324693 | 0.0326304 |
total | := | ab+c | total | 0.2066753 | 0.0151844 | 13.6110637 | 0.0000000 | 0.1772344 | 0.2355815 | 0.2066753 | 0.2075818 | 0.2086115 |
prop | := | ab/total | prop | 0.1564170 | 0.0244688 | 6.3925058 | 0.0000000 | 0.1102938 | 0.2074586 | 0.1564170 | 0.1564170 | 0.1564170 |
Social_Dem_Psy and PGS are the ind brain is mediator
g-factor is the dv
set.seed(1234)
socdem_leecog_lavaan <-'
observed_G~ b*predicted_G_brain + c_socdem*predicted_G_non_brain + c_pgs*leeCognitionp1e_2_score
predicted_G_brain~a_socdem*predicted_G_non_brain + a_pgs*leeCognitionp1e_2_score
observed_G~pc1 + pc2 + pc3 + pc4
predicted_G_brain~pc1 + pc2 + pc3 + pc4
#indirect and total effects
a_socdem_b:=a_socdem*b
a_pgs_b:=a_pgs*b
total_socdem:=a_socdem*b+c_socdem
total_pgs:=a_pgs*b+c_pgs
prop_socdem :=a_socdem_b/total_socdem
prop_pgs :=a_pgs_b/total_pgs
'
fit_socdem_leecog_lavaan <- lavaan::sem(socdem_leecog_lavaan,
data = predicted_brain_no_brain_all_sites_leeCog_scaled,
test = "bollen.stine",
se = "bootstrap", bootstrap = 5000)
lavaan::summary(fit_socdem_leecog_lavaan ,
standardized = TRUE,
rsquare = TRUE,
fit.measures = TRUE)
## lavaan 0.6-9 ended normally after 31 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 15
##
## Used Total
## Number of observations 4389 4815
##
## Model Test User Model:
##
## Test statistic 0.000
## Degrees of freedom 0
##
## Test statistic 0.000
## Degrees of freedom 0
##
## Model Test Baseline Model:
##
## Test statistic 1728.306
## Degrees of freedom 13
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 1.000
## Tucker-Lewis Index (TLI) 1.000
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -11549.863
## Loglikelihood unrestricted model (H1) -11549.863
##
## Akaike (AIC) 23129.725
## Bayesian (BIC) 23225.528
## Sample-size adjusted Bayesian (BIC) 23177.864
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.000
## 90 Percent confidence interval - lower 0.000
## 90 Percent confidence interval - upper 0.000
## P-value RMSEA <= 0.05 NA
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.000
##
## Parameter Estimates:
##
## Standard errors Bootstrap
## Number of requested bootstrap draws 5000
## Number of successful bootstrap draws 5000
##
## Regressions:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## observed_G ~
## prdc_G_ (b) 0.263 0.013 20.323 0.000 0.263 0.266
## prd_G__ (c_sc) 0.803 0.032 25.033 0.000 0.803 0.353
## lCg1_2_ (c_pg) 0.129 0.013 9.812 0.000 0.129 0.130
## predicted_G_brain ~
## prd_G__ (a_sc) 0.539 0.033 16.271 0.000 0.539 0.235
## lCg1_2_ (a_pg) 0.059 0.015 4.035 0.000 0.059 0.059
## observed_G ~
## pc1 0.040 0.051 0.787 0.431 0.040 0.040
## pc2 -0.087 0.174 -0.503 0.615 -0.087 -0.025
## pc3 0.008 0.083 0.097 0.923 0.008 0.008
## pc4 -0.010 0.122 -0.083 0.934 -0.010 -0.011
## predicted_G_brain ~
## pc1 -0.050 0.051 -0.972 0.331 -0.050 -0.049
## pc2 0.076 0.170 0.449 0.653 0.076 0.021
## pc3 -0.012 0.077 -0.155 0.877 -0.012 -0.012
## pc4 0.002 0.113 0.019 0.985 0.002 0.002
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .observed_G 0.706 0.016 45.112 0.000 0.706 0.719
## .predictd_G_brn 0.938 0.017 55.888 0.000 0.938 0.938
##
## R-Square:
## Estimate
## observed_G 0.281
## predictd_G_brn 0.062
##
## Defined Parameters:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## a_socdem_b 0.142 0.011 12.789 0.000 0.142 0.062
## a_pgs_b 0.016 0.004 3.916 0.000 0.016 0.016
## total_socdem 0.945 0.033 28.609 0.000 0.945 0.415
## total_pgs 0.145 0.014 10.570 0.000 0.145 0.146
## prop_socdem 0.150 0.012 12.929 0.000 0.150 0.150
## prop_pgs 0.108 0.027 3.994 0.000 0.108 0.108
socdem_leecog_lavaan_para <- lavaan::parameterEstimates(fit_socdem_leecog_lavaan ,
boot.ci.type="bca.simple",
level=0.95,
ci=TRUE,
standardized = TRUE)
kable(socdem_leecog_lavaan_para)
lhs | op | rhs | label | est | se | z | pvalue | ci.lower | ci.upper | std.lv | std.all | std.nox |
---|---|---|---|---|---|---|---|---|---|---|---|---|
observed_G | ~ | predicted_G_brain | b | 0.2631146 | 0.0129467 | 20.3228779 | 0.0000000 | 0.2367382 | 0.2876208 | 0.2631146 | 0.2655493 | 0.2655493 |
observed_G | ~ | predicted_G_non_brain | c_socdem | 0.8027280 | 0.0320671 | 25.0327529 | 0.0000000 | 0.7416864 | 0.8663541 | 0.8027280 | 0.3525100 | 0.8102483 |
observed_G | ~ | leeCognitionp1e_2_score | c_pgs | 0.1293150 | 0.0131793 | 9.8120012 | 0.0000000 | 0.1041945 | 0.1556013 | 0.1293150 | 0.1298822 | 0.1305265 |
predicted_G_brain | ~ | predicted_G_non_brain | a_socdem | 0.5392928 | 0.0331442 | 16.2711033 | 0.0000000 | 0.4749679 | 0.6062260 | 0.5392928 | 0.2346537 | 0.5393542 |
predicted_G_brain | ~ | leeCognitionp1e_2_score | a_pgs | 0.0592101 | 0.0146736 | 4.0351396 | 0.0000546 | 0.0318080 | 0.0883781 | 0.0592101 | 0.0589246 | 0.0592169 |
observed_G | ~ | pc1 | 0.0404987 | 0.0514325 | 0.7874142 | 0.4310394 | -0.0626762 | 0.1406440 | 0.0404987 | 0.0401294 | 0.0408781 | |
observed_G | ~ | pc2 | -0.0874500 | 0.1737491 | -0.5033118 | 0.6147451 | -0.4307179 | 0.2390868 | -0.0874500 | -0.0245199 | -0.0882693 | |
observed_G | ~ | pc3 | 0.0080095 | 0.0825964 | 0.0969721 | 0.9227486 | -0.1510781 | 0.2527761 | 0.0080095 | 0.0084224 | 0.0080846 | |
observed_G | ~ | pc4 | -0.0101223 | 0.1223925 | -0.0827035 | 0.9340873 | -0.3333312 | 0.0936016 | -0.0101223 | -0.0106964 | -0.0102171 | |
predicted_G_brain | ~ | pc1 | -0.0496401 | 0.0510824 | -0.9717650 | 0.3311675 | -0.1439103 | 0.0582183 | -0.0496401 | -0.0487364 | -0.0496458 | |
predicted_G_brain | ~ | pc2 | 0.0762187 | 0.1697452 | 0.4490182 | 0.6534185 | -0.2659863 | 0.4011320 | 0.0762187 | 0.0211748 | 0.0762274 | |
predicted_G_brain | ~ | pc3 | -0.0119679 | 0.0773923 | -0.1546392 | 0.8771057 | -0.2275455 | 0.1474684 | -0.0119679 | -0.0124693 | -0.0119692 | |
predicted_G_brain | ~ | pc4 | 0.0021078 | 0.1126057 | 0.0187185 | 0.9850657 | -0.1779045 | 0.3231063 | 0.0021078 | 0.0022069 | 0.0021081 | |
observed_G | ~~ | observed_G | 0.7056734 | 0.0156427 | 45.1121209 | 0.0000000 | 0.6769521 | 0.7380331 | 0.7056734 | 0.7189574 | 0.7189574 | |
predicted_G_brain | ~~ | predicted_G_brain | 0.9379524 | 0.0167826 | 55.8884897 | 0.0000000 | 0.9072665 | 0.9736656 | 0.9379524 | 0.9381661 | 0.9381661 | |
predicted_G_non_brain | ~~ | predicted_G_non_brain | 0.1892808 | 0.0000000 | NA | NA | 0.1892808 | 0.1892808 | 0.1892808 | 1.0000000 | 0.1892808 | |
predicted_G_non_brain | ~~ | leeCognitionp1e_2_score | 0.0709779 | 0.0000000 | NA | NA | 0.0709779 | 0.0709779 | 0.0709779 | 0.1639528 | 0.0709779 | |
predicted_G_non_brain | ~~ | pc1 | 0.0582364 | 0.0000000 | NA | NA | 0.0582364 | 0.0582364 | 0.0582364 | 0.1363546 | 0.0582364 | |
predicted_G_non_brain | ~~ | pc2 | 0.0131816 | 0.0000000 | NA | NA | 0.0131816 | 0.0131816 | 0.0131816 | 0.1090704 | 0.0131816 | |
predicted_G_non_brain | ~~ | pc3 | -0.0220665 | 0.0000000 | NA | NA | -0.0220665 | -0.0220665 | -0.0220665 | -0.0486859 | -0.0220665 | |
predicted_G_non_brain | ~~ | pc4 | -0.0115468 | 0.0000000 | NA | NA | -0.0115468 | -0.0115468 | -0.0115468 | -0.0253511 | -0.0115468 | |
leeCognitionp1e_2_score | ~~ | leeCognitionp1e_2_score | 0.9901527 | 0.0000000 | NA | NA | 0.9901527 | 0.9901527 | 0.9901527 | 1.0000000 | 0.9901527 | |
leeCognitionp1e_2_score | ~~ | pc1 | 0.1164586 | 0.0000000 | NA | NA | 0.1164586 | 0.1164586 | 0.1164586 | 0.1192200 | 0.1164586 | |
leeCognitionp1e_2_score | ~~ | pc2 | 0.0298778 | 0.0000000 | NA | NA | 0.0298778 | 0.0298778 | 0.0298778 | 0.1080907 | 0.0298778 | |
leeCognitionp1e_2_score | ~~ | pc3 | -0.0334960 | 0.0000000 | NA | NA | -0.0334960 | -0.0334960 | -0.0334960 | -0.0323121 | -0.0334960 | |
leeCognitionp1e_2_score | ~~ | pc4 | 0.0200220 | 0.0000000 | NA | NA | 0.0200220 | 0.0200220 | 0.0200220 | 0.0192197 | 0.0200220 | |
pc1 | ~~ | pc1 | 0.9637024 | 0.0000000 | NA | NA | 0.9637024 | 0.9637024 | 0.9637024 | 1.0000000 | 0.9637024 | |
pc1 | ~~ | pc2 | 0.2553123 | 0.0000000 | NA | NA | 0.2553123 | 0.2553123 | 0.2553123 | 0.9362483 | 0.2553123 | |
pc1 | ~~ | pc3 | -0.0813157 | 0.0000000 | NA | NA | -0.0813157 | -0.0813157 | -0.0813157 | -0.0795109 | -0.0813157 | |
pc1 | ~~ | pc4 | 0.0206747 | 0.0000000 | NA | NA | 0.0206747 | 0.0206747 | 0.0206747 | 0.0201167 | 0.0206747 | |
pc2 | ~~ | pc2 | 0.0771646 | 0.0000000 | NA | NA | 0.0771646 | 0.0771646 | 0.0771646 | 1.0000000 | 0.0771646 | |
pc2 | ~~ | pc3 | 0.0266052 | 0.0000000 | NA | NA | 0.0266052 | 0.0266052 | 0.0266052 | 0.0919352 | 0.0266052 | |
pc2 | ~~ | pc4 | 0.0041940 | 0.0000000 | NA | NA | 0.0041940 | 0.0041940 | 0.0041940 | 0.0144216 | 0.0041940 | |
pc3 | ~~ | pc3 | 1.0853069 | 0.0000000 | NA | NA | 1.0853069 | 1.0853069 | 1.0853069 | 1.0000000 | 1.0853069 | |
pc3 | ~~ | pc4 | -0.0169518 | 0.0000000 | NA | NA | -0.0169518 | -0.0169518 | -0.0169518 | -0.0155427 | -0.0169518 | |
pc4 | ~~ | pc4 | 1.0960262 | 0.0000000 | NA | NA | 1.0960262 | 1.0960262 | 1.0960262 | 1.0000000 | 1.0960262 | |
a_socdem_b | := | a_socdem*b | a_socdem_b | 0.1418958 | 0.0110950 | 12.7891718 | 0.0000000 | 0.1215286 | 0.1649183 | 0.1418958 | 0.0623121 | 0.1432251 |
a_pgs_b | := | a_pgs*b | a_pgs_b | 0.0155791 | 0.0039780 | 3.9163226 | 0.0000899 | 0.0083469 | 0.0238579 | 0.0155791 | 0.0156474 | 0.0157250 |
total_socdem | := | a_socdem*b+c_socdem | total_socdem | 0.9446238 | 0.0330180 | 28.6093655 | 0.0000000 | 0.8811028 | 1.0102441 | 0.9446238 | 0.4148221 | 0.9534735 |
total_pgs | := | a_pgs*b+c_pgs | total_pgs | 0.1448941 | 0.0137075 | 10.5704508 | 0.0000000 | 0.1187712 | 0.1723074 | 0.1448941 | 0.1455296 | 0.1462515 |
prop_socdem | := | a_socdem_b/total_socdem | prop_socdem | 0.1502141 | 0.0116186 | 12.9287596 | 0.0000000 | 0.1288758 | 0.1742519 | 0.1502141 | 0.1502141 | 0.1502141 |
prop_pgs | := | a_pgs_b/total_pgs | prop_pgs | 0.1075203 | 0.0269231 | 3.9936053 | 0.0000651 | 0.0583395 | 0.1637417 | 0.1075203 | 0.1075203 | 0.1075203 |
cor.test(predicted_brain_no_brain_all_sites_leeCog_scaled$predicted_G_non_brain,
predicted_brain_no_brain_all_sites_leeCog_scaled$leeCognitionp1e_2_score )
##
## Pearson's product-moment correlation
##
## data: predicted_brain_no_brain_all_sites_leeCog_scaled$predicted_G_non_brain and predicted_brain_no_brain_all_sites_leeCog_scaled$leeCognitionp1e_2_score
## t = 11.202, df = 4609, p-value < 0.00000000000000022
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1345642 0.1907654
## sample estimates:
## cor
## 0.1627969
#save(file = "mediation_gfactor_new_prepocessing_sex_race.RData")
1.11 social demographics
race/ethnicity is from ACS sex is from ACS family income family type household size parents’ work status # demo_prnt_empl_v2 [a bit too much to include] parents’ education sumEcon_insecurities
1.11.1 ABCD Parent Demographics Survey
Variable type: character
Variable type: logical
Variable type: numeric
Variable type: character
Variable type: factor
Variable type: numeric
1.11.2 more Social Demographics from Residential History Derived Scores
“RESHIST_ADDR1_ADI_WSUM” Residential history derived - Area Deprivation Index: scaled weighted sum based on Kind et al., Annals of Internal Medicine, 2014 1 “RESHIST_ADDR1_GRNDTOT” the grand total Uniform Crime Reports, “RESHIST_ADDR1_LEADRISK” the estimated lead risk in census tract of primary residential address
Variable type: character
Variable type: numeric