Please note that if the code does not work, sometimes it is because the future_map function is unstable. If this happens, please use the map function instead and write the parallel computation inside the function map.
rm(list = ls(all.names = TRUE)) #will clear all objects includes hidden objects.
gc() #free up memrory and report the memory usage.
## used (Mb) gc trigger (Mb) max used (Mb)
## Ncells 514944 27.6 1149345 61.4 643845 34.4
## Vcells 971892 7.5 8388608 64.0 1649067 12.6
The following libraries and default settings were used during the analysis:
options(scipen = 999)
# if (!requireNamespace("BiocManager", quietly = TRUE))
# install.packages("BiocManager")
# BiocManager::install("survcomp")
library(tidyverse)
library(tidymodels)
library("cowplot")
library("vip")
library(ggdist)
library(ggplot2)
##parallel map
library("eNetXplorer")
library(purrr)
#library(parallel)
library("furrr")
future::plan(multiprocess(workers = 16))
theme_set(theme_bw() + theme(panel.grid = element_blank()))
We first loaded all of the relevant data files (not shown here as they refer to local directories):
MRFINDINGS01 <-read.csv(paste0(dataFold, "ABCD_MRFINDINGS01_DATA_TABLE.csv")) %>%
filter(EVENTNAME =="baseline_year_1_arm_1")
MRIQCRP102 <-read.csv(paste0(dataFold, "MRIQCRP102_DATA_TABLE.csv")) %>%
filter(EVENTNAME =="baseline_year_1_arm_1")
MRIQCRP202 <-read.csv(paste0(dataFold, "MRIQCRP202_DATA_TABLE.csv")) %>%
filter(EVENTNAME =="baseline_year_1_arm_1")
MRIQCRP302 <-read.csv(paste0(dataFold, "MRIQCRP302_DATA_TABLE.csv")) %>%
filter(EVENTNAME =="baseline_year_1_arm_1")
FREESQC01 <-read.csv(paste0(dataFold, "FREESQC01_DATA_TABLE.csv")) %>%
filter(EVENTNAME =="baseline_year_1_arm_1")
DMRIQC01 <-read.csv(paste0(dataFold, "DMRIQC01_DATA_TABLE.csv")) %>%
filter(EVENTNAME =="baseline_year_1_arm_1")
NBackBeh <-read.csv(paste0(dataFold, "ABCD_MRINBACK02_DATA_TABLE.csv")) %>%
filter(EVENTNAME =="baseline_year_1_arm_1")
NBackAparc <-read.csv(paste0(dataFold, "NBACK_BWROI02_DATA_TABLE.csv")) %>%
filter(EVENTNAME =="baseline_year_1_arm_1")
NbackAsegDest <-read.csv(paste0(manipuFold, "NbackDestAsegReadableGgseg3d.csv"))
# NbackAsegDestR1 <-read.csv(paste0(manipuFold, "NbackDestAsegReadableGgseg3dRunOne.csv"))
# NbackAsegDestR2 <-read.csv(paste0(manipuFold, "NbackDestAsegReadableGgseg3dRunTwo.csv"))
MRIinfo <-tbl_df(read.csv(paste0(dataFold, "ABCD_MRI01_DATA_TABLE.csv"))) %>%
filter(EVENTNAME =="baseline_year_1_arm_1")
Siteinfo <-tbl_df(read.csv(paste0(dataFold, "ABCD_LT01_DATA_TABLE.csv"))) %>%
filter(EVENTNAME =="baseline_year_1_arm_1")
NIH_TB <-tbl_df(read.csv(paste0(dataFold,"ABCD_TBSS01_DATA_TABLE.csv"))) %>%
filter(EVENTNAME =="baseline_year_1_arm_1")
LittleMan <-tbl_df(read.csv(paste0(dataFold,"LMTP201_DATA_TABLE.csv"))) %>%
filter(EVENTNAME =="baseline_year_1_arm_1")
Pearson <-tbl_df(read.csv(paste0(dataFold,"ABCD_PS01_DATA_TABLE.csv"))) %>%
filter(EVENTNAME =="baseline_year_1_arm_1")
short_names <- tbl_df(read.csv(paste0(anotherFold,"ShortNames_all.csv") ))
short_names_two_lines <- tbl_df(read_csv(paste0(anotherFold,"ShortNames_all_two_lines_1_dec_2021_2.csv") ))
MRIQcAll <- plyr::join_all(list(MRFINDINGS01,MRIQCRP102,
MRIQCRP202,MRIQCRP302,FREESQC01,DMRIQC01,
NBackBeh,NBackAparc,NbackAsegDest,MRIinfo,Siteinfo,NIH_TB,LittleMan,Pearson),
by='SUBJECTKEY', type='full')
MRIQcAll <- MRIQcAll[,!duplicated(colnames(MRIQcAll))]
Next, we included only the participants that passed the following QC:
MRIQcAll$NoIncidental <- ifelse((MRIQcAll$MRIF_SCORE== 3 |
MRIQcAll$MRIF_SCORE== 4 |
MRIQcAll$MRIF_HYDROCEPHALUS == "yes"|
MRIQcAll$MRIF_HERNIATION == "yes"), 0, 1)
MRIQcAll %>% count(NoIncidental)
## NoIncidental n
## 1 0 451
## 2 1 11359
## 3 NA 65
MRIQcAll %>% count(IQC_T1_OK_SER)
## IQC_T1_OK_SER n
## 1 0 63
## 2 1 10553
## 3 2 870
## 4 3 97
## 5 NA 292
MRIQcAll %>% count(FSQC_QC)
## FSQC_QC n
## 1 0 462
## 2 1 11076
## 3 NA 337
MRIQcAll$T1FreeSurferQCOk <- ifelse((MRIQcAll$IQC_T1_OK_SER > 0 &
MRIQcAll$FSQC_QC == 1), 1, 0)
count(MRIQcAll,T1FreeSurferQCOk)
## T1FreeSurferQCOk n
## 1 0 524
## 2 1 11004
## 3 NA 347
MRIQcAll %>% count(IQC_NBACK_OK_SER>0)
## IQC_NBACK_OK_SER > 0 n
## 1 FALSE 143
## 2 TRUE 10045
## 3 NA 1687
MRIQcAll %>% count(TFMRI_NBACK_BEH_PERFORMFLAG==1)
## TFMRI_NBACK_BEH_PERFORMFLAG == 1 n
## 1 FALSE 1464
## 2 TRUE 8004
## 3 NA 2407
MRIQcAll %>% count(TFMRI_NBACK_ALL_BETA_DOF>200)
## TFMRI_NBACK_ALL_BETA_DOF > 200 n
## 1 FALSE 33
## 2 TRUE 8821
## 3 NA 3021
MRIQcAll$NbackBehDofOk <- ifelse((MRIQcAll$IQC_NBACK_OK_SER>0 &
MRIQcAll$TFMRI_NBACK_BEH_PERFORMFLAG ==1 &
MRIQcAll$TFMRI_NBACK_ALL_BETA_DOF>200), 1, 0)
count(MRIQcAll,NbackBehDofOk)
## NbackBehDofOk n
## 1 0 1602
## 2 1 7439
## 3 NA 2834
MRIQcAll$AllNbackQc <- ifelse((MRIQcAll$NoIncidental == 1 &
MRIQcAll$T1FreeSurferQCOk == 1 &
MRIQcAll$NbackBehDofOk == 1), 1, 0)
count(MRIQcAll,AllNbackQc)
## AllNbackQc n
## 1 0 2399
## 2 1 6947
## 3 NA 2529
Nback.QCed <- MRIQcAll %>% filter(AllNbackQc == 1)
There was an issue was reported with the Philips scanners and it was recommended that the data from these scanners should be dropped. We did so:
#remove phil and add beh during fMRI
Nback.QCedNoPhil <- Nback.QCed %>%
filter(MRI_INFO_MANUFACTURER != 'Philips Medical Systems')
#check how many variables in X2backVS0back and the list of ROIs
Nback.2backVS0back <- Nback.QCedNoPhil%>% select(.,starts_with("X2backvs0back"))
#colnames(Nback.2backVS0back)
Here are a list of responsevariable names which are used in the later analysis. Both short names ang long names are used in plotting.
Resp_Var <- c('TFMRI_NB_ALL_BEH_C2B_RATE',
"NIHTBX_PICVOCAB_UNCORRECTED",
"NIHTBX_FLANKER_UNCORRECTED",
"NIHTBX_LIST_UNCORRECTED",
"NIHTBX_CARDSORT_UNCORRECTED",
"NIHTBX_PATTERN_UNCORRECTED",
"NIHTBX_PICTURE_UNCORRECTED",
"NIHTBX_READING_UNCORRECTED",
"LMT_SCR_PERC_CORRECT",
"PEA_RAVLT_LD_TRIAL_VII_TC",
"PEA_WISCV_TRS")
resp_var_plotting_long <- c("2-back working memory",
"Picture vocabulary test",
"Flanker test",
"List sorting working memory",
"Dimentional change card sort test",
"Pattern comparison processing speed test",
"Picture sequence memory test",
"Oral reading recognition test",
"Little man task correct percentage",
"RAVLT long delay trial VII total correct",
"WISC_V matrix reasoning total raw score"
)
resp_var_plotting_short <- c("2-back Work Mem",
"Pic Vocab",
"Flanker",
"List Work Mem",
"Card Sort", # "Cog Flex",
"Pattern Speed",
"Seq Memory",
"Reading Recog",
"Little Man",
"Audi Verbal",
"Matrix Reason")
resp_var_plotting <- tibble("response"
=Resp_Var,
"longer_name"=resp_var_plotting_long,
"short_name"=resp_var_plotting_short)
subj_info <- c('SUBJECTKEY', 'MRI_INFO_DEVICESERIALNUMBER', 'SITE_ID_L')
data_all_average <- Nback.QCedNoPhil %>%
select(SUBJECTKEY,
all_of(subj_info),
all_of(Resp_Var),
starts_with('X2backvs0back')) %>%
rename_at(vars(-all_of(subj_info),-all_of(Resp_Var)),
~ str_replace(., 'X2backvs0back_ROI_', 'roi_'))
### checking whether the short names and ROI names in the data are the same
name_check <- which(short_names$roi != str_remove(names(select(data_all_average,starts_with("roi_"))),"roi_"))
print(name_check)
## integer(0)
new_shorter_names <- short_names
new_shorter_names$roiShort[97] <- "R Subcentral"
new_shorter_names$roiShort <- str_squish(string = new_shorter_names$roiShort)
### new_shorter_names_two_lines are used for plotting roi names in two lines to prevent labels being cut
new_shorter_names_two_lines <- short_names_two_lines
new_shorter_names_two_lines$roiShortTwoLines <- map(short_names_two_lines$roiShortAddLines,
~str_replace(.x,"55", "\n")) %>% unlist()
We first drop participants with na in any variable of interests.
data_all_listwise <- data_all_average %>%
drop_na()
We also performed listwise deletion and dropped all participants for whom either the behavioral performance or the activation across some brain area was greater than 3 * IQR (interquartile range).
The outliers are removed with respect to training and testing data sets. So no count of columns is displayed here. Only do IQR remove for the brain area features that is those variables starts with “roi_”.
The data are scaled after the IQR is removed.
## this IQR function is used in the recipe
IQR_remove <- function(data_split, resp_vec){
data_split%>%
mutate_at(vars(starts_with("roi_"),all_of(resp_vec)), ~ ifelse(
.x > quantile(.x, na.rm = TRUE)[4] + 3 * IQR(.x, na.rm = TRUE) |
.x < quantile(.x, na.rm = TRUE)[2] - 3 * IQR(.x, na.rm = TRUE),
NA, .x)) %>%
drop_na() %>%
mutate_if(is.numeric, ~ (.x - mean(.x)) / sd(.x))
## scaling the data set is in not the recipe function
}
Next we checked the number of participants across sites and scanners: Note that site 22 and site08 have fewer than 100 participants when IQR rules were applied.
# Remove site 22 and 8
data_all_listwise <- data_all_listwise %>%
filter(SITE_ID_L != 'site22' & SITE_ID_L != 'site08')
Most are normally distributed.
#Look at distribution of NIHTBX_LIST_UNCORRECTED (i.e., working memory from Nback)
#keep track of all the variable names for later use:
resp_names <-data_all_listwise %>% select(all_of(Resp_Var))%>%
names()%>%
set_names()
feature_names <- data_all_listwise %>% select(starts_with("roi_"))%>%
colnames()%>%
set_names()
density_plot_grid <- resp_names %>%
map(~ggplot(data_all_listwise,aes(x=.data[[.]]))
+stat_function(fun=dnorm,
color="skyblue", size = 1.5,
args=list(mean=mean(data_all_listwise$.),
sd=sd(data_all_listwise$.))) +
geom_density() +
labs(x = NULL, y =NULL,title = resp_var_plotting$short_name[[which(resp_var_plotting$response==.)]])
)
title_density_plot <- ggdraw() +
draw_label(
"Density plots of all the Cognitive Performance Variables",
fontface = 'bold',
x = 0,
hjust = 0
) +
theme(
# add margin on the left of the drawing canvas,
# so title is aligned with left edge of first plot
plot.margin = margin(0, 0, 0, 7)
)
plot_grid(title_density_plot,plot_grid(plotlist = density_plot_grid),nrow = 2 , rel_heights = c(0.1, 1))
set.seed(123456)
data_split <- initial_split(data_all_listwise)
split_train <- training(data_split)
split_test <- testing(data_split)
enet_tuning <- function(recipe_input, formula_input){
set.seed(123)
train_input <- recipe_input %>% bake(new_data=NULL)
tuning_cv_folds <- train_input %>%
vfold_cv(v = 10)
## mtry is the number of predictors to sample at each split
## min_n (the number of observations needed to keep splitting nodes)
model_spec <-linear_reg(penalty =tune(),
mixture = tune()) %>%
set_mode("regression") %>%
set_engine("glmnet")
tune_wf <- workflow() %>%
add_recipe(recipe_input) %>%
add_model(model_spec)
## automate generate grid for hyperparameters
model_grid <-
model_spec %>%
parameters(penalty(range = c(-10,1),
trans = log10_trans()),
mixture()) %>%
grid_regular(levels = c(200,11))
tune_ctrl <- control_grid(save_pred = TRUE, verbose = TRUE
,parallel_over = "everything"
)
library(doFuture)
registerDoFuture()
plan(multisession(workers = 30))
#start <- Sys.time()
tune_res <- tune_grid(
tune_wf,
resamples = tuning_cv_folds,
metrics = metric_set(rmse),
grid = model_grid,
control= tune_ctrl
)
best_tune <- select_best(tune_res,
metric = "rmse")
best_tuned_param <- show_best(tune_res,
metric="rmse")
enet_final_wf <- tune_wf %>% finalize_workflow(best_tune)
return(list(enet_wf_final = enet_final_wf,
best_enet_model = best_tune,
best_enet_forest_param = best_tuned_param))
}
enet_grid <- parameters(penalty(range = c(-10,1),
trans = log10_trans()),
mixture()) %>%
grid_regular(levels = c(200,11))
range(enet_grid$penalty)
## [1] 0.0000000001 10.0000000000
range(enet_grid$mixture)
## [1] 0 1
sort(unique(enet_grid$penalty))
## [1] 0.0000000001000000 0.0000000001135733
## [3] 0.0000000001289890 0.0000000001464971
## [5] 0.0000000001663817 0.0000000001889652
## [7] 0.0000000002146141 0.0000000002437444
## [9] 0.0000000002768287 0.0000000003144035
## [11] 0.0000000003570786 0.0000000004055461
## [13] 0.0000000004605922 0.0000000005231099
## [15] 0.0000000005941134 0.0000000006747544
## [17] 0.0000000007663411 0.0000000008703591
## [19] 0.0000000009884959 0.0000000011226678
## [21] 0.0000000012750512 0.0000000014481182
## [23] 0.0000000016446762 0.0000000018679136
## [25] 0.0000000021214518 0.0000000024094036
## [27] 0.0000000027364400 0.0000000031078662
## [29] 0.0000000035297073 0.0000000040088063
## [31] 0.0000000045529351 0.0000000051709202
## [33] 0.0000000058727866 0.0000000066699197
## [35] 0.0000000075752503 0.0000000086034644
## [37] 0.0000000097712415 0.0000000110975250
## [39] 0.0000000126038293 0.0000000143145894
## [41] 0.0000000162575567 0.0000000184642494
## [43] 0.0000000209704640 0.0000000238168555
## [45] 0.0000000270495973 0.0000000307211300
## [47] 0.0000000348910121 0.0000000396268864
## [49] 0.0000000450055768 0.0000000511143348
## [51] 0.0000000580522552 0.0000000659318827
## [53] 0.0000000748810386 0.0000000850448934
## [55] 0.0000000965883224 0.0000001096985798
## [57] 0.0000001245883364 0.0000001414991297
## [59] 0.0000001607052818 0.0000001825183494
## [61] 0.0000002072921780 0.0000002354286414
## [63] 0.0000002673841616 0.0000003036771118
## [65] 0.0000003448962260 0.0000003917101491
## [67] 0.0000004448782831 0.0000005052631065
## [69] 0.0000005738441648 0.0000006517339605
## [71] 0.0000007401959997 0.0000008406652886
## [73] 0.0000009547716114 0.0000010843659687
## [75] 0.0000012315506033 0.0000013987131026
## [77] 0.0000015885651294 0.0000018041864094
## [79] 0.0000020490746898 0.0000023272024790
## [81] 0.0000026430814870 0.0000030018358136
## [83] 0.0000034092850697 0.0000038720387818
## [85] 0.0000043976036093 0.0000049945051159
## [87] 0.0000056724260685 0.0000064423635087
## [89] 0.0000073168071434 0.0000083099419494
## [91] 0.0000094378782778 0.0000107189131921
## [93] 0.0000121738272774 0.0000138262217376
## [95] 0.0000157029012473 0.0000178343087693
## [97] 0.0000202550193923 0.0000230043011977
## [99] 0.0000261267522556 0.0000296730240819
## [101] 0.0000337006432927 0.0000382749447852
## [103] 0.0000434701315813 0.0000493704785284
## [105] 0.0000560716993821 0.0000636824994472
## [107] 0.0000723263389648 0.0000821434358492
## [109] 0.0000932930402628 0.0001059560179278
## [111] 0.0001203377840778 0.0001366716356462
## [113] 0.0001552225357427 0.0001762914118096
## [115] 0.0002002200371816 0.0002273965752358
## [117] 0.0002582618760683 0.0002933166278390
## [119] 0.0003331294787935 0.0003783462617132
## [121] 0.0004297004704321 0.0004880251583654
## [123] 0.0005542664520663 0.0006294988990222
## [125] 0.0007149428986598 0.0008119844993184
## [127] 0.0009221978823334 0.0010473708979595
## [129] 0.0011895340673703 0.0013509935211980
## [131] 0.0015343684089300 0.0017426333860097
## [133] 0.0019791668678536 0.0022478058335487
## [135] 0.0025529080682395 0.0028994228538829
## [137] 0.0032929712550972 0.0037399373024788
## [139] 0.0042475715525369 0.0048241087041654
## [141] 0.0054789011795939 0.0062225708367302
## [143] 0.0070671812739275 0.0080264335222572
## [145] 0.0091158882997508 0.0103532184329566
## [147] 0.0117584955405216 0.0133545156292990
## [149] 0.0151671688847092 0.0172258596539879
## [151] 0.0195639834351706 0.0222194686093953
## [153] 0.0252353917043477 0.0286606761694826
## [155] 0.0325508859983506 0.0369691270719503
## [157] 0.0419870708444392 0.0476861169771447
## [159] 0.0541587137807949 0.0615098578858050
## [161] 0.0698587974678526 0.0793409666579749
## [163] 0.0901101825166504 0.1023411402105453
## [165] 0.1162322468679854 0.1320088400831422
## [167] 0.1499268432786047 0.1702769172225905
## [169] 0.1933891750455232 0.2196385372416551
## [171] 0.2494508135230317 0.2833096101839330
## [173] 0.3217641750250735 0.3654383070957262
## [175] 0.4150404757850489 0.4713753134116729
## [177] 0.5353566677410740 0.6080224261649427
## [179] 0.6905513520162345 0.7842822061337682
## [181] 0.8907354638610459 1.0116379797662070
## [183] 1.1489510001873109 1.3049019780144069
## [185] 1.4820207057988601 1.6831803533309617
## [187] 1.9116440753857036 2.1711179456945096
## [189] 2.4658110758226037 2.8005038941836369
## [191] 3.1806256927941190 3.6123426997094379
## [193] 4.1026581058271905 4.6595256686646866
## [195] 5.2919787359584580 6.0102767820703882
## [197] 6.8260718342724065 7.7525974886294646
## [199] 8.8048835816434821 10.0000000000000000
sort(unique(enet_grid$mixture))
## [1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
random_forest_tuning <- function(recipe_input, formula_input){
set.seed(123)
train_input <- recipe_input %>% bake(new_data=NULL)
tuning_cv_folds <- train_input %>%
vfold_cv(v = 10)
## mtry is the number of predictors to sample at each split
## min_n (the number of observations needed to keep splitting nodes)
tune_spec <-rand_forest(mtry = tune(),
trees = 500,
min_n = tune()) %>%
set_mode("regression") %>%
set_engine("ranger")
tune_wf <- workflow() %>%
add_recipe(recipe_input) %>%
add_model(tune_spec)
## automate generate grid for hyperparameters
rf_grid <- grid_latin_hypercube(
min_n(range = c(2,2000)),
mtry(range = c(1, 167)),
size = 3000
)
rf_ctrl <- control_grid(save_pred = TRUE,
verbose = TRUE,
parallel_over = "everything")
library(doFuture)
registerDoFuture()
plan(multisession(workers = 30))
tune_res <- tune_grid(
tune_wf,
resamples = tuning_cv_folds,
metrics = metric_set(rmse),
grid = rf_grid,
control= rf_ctrl
)
best_tune <- select_best(tune_res, metric = "rmse")
best_tuned_param <- show_best(tune_res, metric="rmse")
rf_final_wf <- tune_wf %>% finalize_workflow(best_tune)
return(list(random_forest_wf_final = rf_final_wf,
best_random_forest_model = best_tune,
best_random_forest_param = best_tuned_param))
}
set.seed(123)
random_forest_grid <- grid_latin_hypercube(
min_n(range = c(2,2000)),
mtry(range = c(1, 167)),
size = 3000
)
##range of the grid
range(random_forest_grid$min_n)
## [1] 2 2000
range(random_forest_grid$mtry)
## [1] 1 167
##unique elements of the grid
sort(unique(random_forest_grid$min_n))
## [1] 2 3 4 5 6 7 8 9 10 11
## [11] 12 13 14 15 16 17 18 19 20 21
## [21] 22 23 24 25 26 27 28 29 30 31
## [31] 32 33 34 35 36 37 38 39 40 41
## [41] 42 43 44 45 46 47 48 49 50 51
## [51] 52 53 54 55 56 57 58 59 60 61
## [61] 62 63 64 65 66 67 68 69 70 71
## [71] 73 74 75 76 77 78 79 80 81 82
## [81] 83 84 85 86 87 88 89 90 91 92
## [91] 93 94 95 96 97 98 99 100 101 102
## [101] 103 104 105 106 107 108 109 110 111 112
## [111] 113 114 115 116 117 118 119 120 121 122
## [121] 123 124 125 126 127 128 129 130 131 132
## [131] 133 134 135 136 137 139 140 141 142 143
## [141] 144 145 146 147 148 149 150 151 152 153
## [151] 154 155 156 157 158 159 160 161 162 163
## [161] 164 165 166 167 168 169 170 171 172 173
## [171] 174 175 176 177 178 179 180 181 182 183
## [181] 184 185 186 187 188 189 190 191 192 193
## [191] 194 195 196 197 198 199 200 201 202 203
## [201] 204 205 206 207 208 209 210 211 212 213
## [211] 214 215 216 217 218 219 220 221 222 223
## [221] 224 225 226 227 228 229 230 231 232 233
## [231] 234 236 237 238 239 240 241 242 244 245
## [241] 246 247 248 249 250 251 252 253 254 255
## [251] 256 257 258 259 260 261 262 263 264 265
## [261] 266 267 268 270 271 272 273 274 275 276
## [271] 277 278 279 280 281 282 283 284 285 286
## [281] 287 288 289 290 291 292 293 294 295 296
## [291] 297 298 299 300 301 302 303 304 305 306
## [301] 307 308 309 310 311 312 313 314 315 316
## [311] 317 318 319 320 321 322 323 324 325 326
## [321] 327 328 329 330 331 332 333 334 335 336
## [331] 337 338 339 340 341 342 343 344 345 346
## [341] 347 348 350 351 352 353 354 355 356 358
## [351] 359 360 361 362 363 364 365 366 367 368
## [361] 369 370 371 372 373 374 375 376 377 378
## [371] 379 380 381 382 383 384 385 386 387 388
## [381] 389 390 391 392 393 394 395 396 397 398
## [391] 400 401 402 403 404 405 406 407 408 409
## [401] 410 411 412 413 414 415 416 417 418 419
## [411] 420 421 422 423 424 425 426 427 428 429
## [421] 430 431 432 433 434 435 436 437 438 439
## [431] 440 441 442 443 444 445 446 447 448 449
## [441] 450 451 452 453 454 455 456 457 458 459
## [451] 460 461 462 463 464 465 466 467 468 469
## [461] 470 471 472 473 474 475 476 477 478 479
## [471] 480 481 482 483 484 485 486 487 488 489
## [481] 490 491 492 493 494 495 496 497 498 499
## [491] 500 501 502 503 504 505 506 507 508 509
## [501] 510 511 512 513 514 515 516 517 518 519
## [511] 520 521 522 523 524 525 526 527 528 529
## [521] 530 531 532 533 534 535 536 537 538 539
## [531] 540 541 542 543 544 545 546 547 548 549
## [541] 550 551 552 553 554 555 556 557 558 559
## [551] 560 561 562 563 564 565 566 567 568 569
## [561] 570 571 572 573 574 575 576 577 578 579
## [571] 580 581 582 583 584 585 586 587 588 589
## [581] 590 591 592 593 594 595 596 597 598 599
## [591] 600 601 602 603 604 605 606 607 608 609
## [601] 610 611 612 613 614 615 616 617 618 619
## [611] 620 621 622 623 624 625 626 627 628 629
## [621] 630 631 632 633 634 635 636 637 638 639
## [631] 640 641 642 643 644 645 647 648 649 650
## [641] 651 652 653 654 655 656 657 658 659 660
## [651] 661 662 663 665 666 667 668 669 670 671
## [661] 672 673 674 675 676 677 678 679 680 681
## [671] 682 683 684 685 686 687 688 689 690 691
## [681] 692 693 694 695 696 697 698 699 700 701
## [691] 702 703 704 705 706 707 708 709 710 711
## [701] 712 713 715 716 717 718 719 720 721 722
## [711] 723 725 726 727 728 729 730 731 732 733
## [721] 735 736 737 738 739 740 741 742 743 744
## [731] 745 746 747 748 749 750 751 752 753 755
## [741] 756 757 758 759 760 761 762 763 764 765
## [751] 766 767 768 769 770 771 772 773 774 775
## [761] 776 777 778 779 780 781 782 783 784 785
## [771] 786 787 788 789 790 791 792 793 794 795
## [781] 796 797 798 799 800 801 802 803 804 805
## [791] 806 807 808 809 810 811 812 813 814 815
## [801] 816 817 818 819 820 821 822 823 824 825
## [811] 826 827 828 829 830 831 832 833 834 835
## [821] 836 837 838 839 840 841 842 843 844 845
## [831] 846 847 848 849 850 851 852 853 854 855
## [841] 856 857 858 859 860 861 862 863 864 865
## [851] 866 867 868 869 870 871 872 873 874 875
## [861] 876 877 878 880 881 882 883 884 885 886
## [871] 887 888 889 890 891 892 893 894 895 896
## [881] 897 898 899 900 901 902 903 904 905 906
## [891] 907 908 909 910 911 912 913 914 915 916
## [901] 917 918 919 920 921 922 923 924 925 926
## [911] 927 928 929 930 931 932 933 934 935 936
## [921] 937 938 939 940 941 942 943 944 945 946
## [931] 947 948 949 950 951 952 953 954 955 956
## [941] 957 958 959 960 961 962 963 964 965 966
## [951] 967 968 969 970 971 972 973 974 975 976
## [961] 978 979 980 981 982 983 984 985 986 987
## [971] 988 989 990 991 992 993 994 995 996 997
## [981] 998 999 1000 1002 1003 1004 1005 1006 1007 1008
## [991] 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
## [1001] 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
## [1011] 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
## [1021] 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
## [1031] 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
## [1041] 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
## [1051] 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
## [1061] 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
## [1071] 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
## [1081] 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
## [1091] 1109 1110 1111 1112 1113 1114 1116 1117 1118 1119
## [1101] 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
## [1111] 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
## [1121] 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
## [1131] 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
## [1141] 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
## [1151] 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
## [1161] 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
## [1171] 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
## [1181] 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
## [1191] 1210 1211 1212 1213 1214 1215 1217 1218 1219 1220
## [1201] 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
## [1211] 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
## [1221] 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
## [1231] 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
## [1241] 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
## [1251] 1271 1272 1273 1274 1275 1276 1277 1279 1280 1281
## [1261] 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
## [1271] 1292 1293 1294 1295 1297 1298 1299 1300 1301 1302
## [1281] 1303 1304 1305 1306 1307 1309 1310 1311 1312 1313
## [1291] 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
## [1301] 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
## [1311] 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
## [1321] 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
## [1331] 1355 1357 1358 1359 1360 1361 1362 1363 1364 1365
## [1341] 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
## [1351] 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
## [1361] 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
## [1371] 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
## [1381] 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
## [1391] 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
## [1401] 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
## [1411] 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
## [1421] 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
## [1431] 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
## [1441] 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
## [1451] 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
## [1461] 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
## [1471] 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
## [1481] 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
## [1491] 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
## [1501] 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
## [1511] 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
## [1521] 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
## [1531] 1556 1557 1558 1559 1560 1561 1562 1564 1565 1566
## [1541] 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
## [1551] 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
## [1561] 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
## [1571] 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
## [1581] 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
## [1591] 1617 1618 1619 1620 1621 1622 1624 1625 1626 1627
## [1601] 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
## [1611] 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
## [1621] 1648 1649 1650 1651 1652 1653 1654 1655 1656 1658
## [1631] 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
## [1641] 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
## [1651] 1679 1680 1681 1682 1683 1684 1686 1687 1688 1689
## [1661] 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
## [1671] 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
## [1681] 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
## [1691] 1720 1721 1722 1723 1724 1725 1726 1727 1728 1730
## [1701] 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
## [1711] 1742 1744 1746 1748 1749 1750 1751 1752 1753 1754
## [1721] 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
## [1731] 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
## [1741] 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
## [1751] 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
## [1761] 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
## [1771] 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
## [1781] 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
## [1791] 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
## [1801] 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
## [1811] 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
## [1821] 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
## [1831] 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
## [1841] 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
## [1851] 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
## [1861] 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
## [1871] 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
## [1881] 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
## [1891] 1925 1926 1927 1928 1929 1930 1931 1932 1933 1935
## [1901] 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
## [1911] 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
## [1921] 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
## [1931] 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
## [1941] 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
## [1951] 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
## [1961] 1997 1998 1999 2000
sort(unique(random_forest_grid$mtry))
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13
## [14] 14 15 16 17 18 19 20 21 22 23 24 25 26
## [27] 27 28 29 30 31 32 33 34 35 36 37 38 39
## [40] 40 41 42 43 44 45 46 47 48 49 50 51 52
## [53] 53 54 55 56 57 58 59 60 61 62 63 64 65
## [66] 66 67 68 69 70 71 72 73 74 75 76 77 78
## [79] 79 80 81 82 83 84 85 86 87 88 89 90 91
## [92] 92 93 94 95 96 97 98 99 100 101 102 103 104
## [105] 105 106 107 108 109 110 111 112 113 114 115 116 117
## [118] 118 119 120 121 122 123 124 125 126 127 128 129 130
## [131] 131 132 133 134 135 136 137 138 139 140 141 142 143
## [144] 144 145 146 147 148 149 150 151 152 153 154 155 156
## [157] 157 158 159 160 161 162 163 164 165 166 167
xgboost_tuning <- function(recipe_input, formula_input){
set.seed(123)
train_input <- recipe_input %>% bake(new_data=NULL)
tuning_cv_folds <- train_input %>%
vfold_cv(v = 10)
## mtry is the number of predictors to sample at each split
## min_n (the number of observations needed to keep splitting nodes)
tune_spec <-boost_tree(mtry = tune(),
trees = 500,
min_n = tune(),
tree_depth = tune(),
loss_reduction = tune(), ## first three: model complexity
sample_size = tune(), ## randomness
learn_rate = tune()) %>%
set_mode("regression") %>%
set_engine("xgboost")
tune_wf <- workflow() %>%
add_recipe(recipe_input) %>%
add_model(tune_spec)
## automate generate grid for hyperparameters
xgb_grid <- grid_latin_hypercube(
tree_depth(),
min_n(range = c(2,1000)),
loss_reduction(),
sample_size = sample_prop(),
mtry(range = c(1, 167)),
learn_rate(),
size = 3000
)
xgb_ctrl <- control_grid(save_pred = TRUE,
verbose = TRUE,
parallel_over = "everything")
library(doFuture)
registerDoFuture()
plan(multisession(workers = 30))
tune_res <- tune_grid(
tune_wf,
resamples = tuning_cv_folds,
metrics = metric_set(rmse),
grid = xgb_grid,
control= xgb_ctrl
)
best_tune <- select_best(tune_res, metric = "rmse")
best_tuned_param <- show_best(tune_res, metric="rmse")
xgboost_final_wf <- tune_wf %>% finalize_workflow(best_tune)
return(list(xgboost_wf_final = xgboost_final_wf,
best_xgboost_model = best_tune,
best_xgboost_param = best_tuned_param))
}
set.seed(123)
xgboost_grid <- grid_latin_hypercube(
tree_depth(),
min_n(range = c(2,1000)),
loss_reduction(),
sample_size = sample_prop(),
mtry(range = c(1, 167)),
learn_rate(),
size = 3000
)
##range of the grid
range(xgboost_grid$tree_depth)
## [1] 1 15
range(xgboost_grid$min_n)
## [1] 2 1000
range(xgboost_grid$loss_reduction)
## [1] 0.0000000001003709 31.4091533457374190
range(xgboost_grid$sample_size)
## [1] 0.1001774 0.9998824
range(xgboost_grid$mtry)
## [1] 1 167
range(xgboost_grid$learn_rate)
## [1] 0.000000000100421 0.099600824160661
## unique grid elements
sort(unique(xgboost_grid$tree_depth))
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
sort(unique(xgboost_grid$min_n))
## [1] 2 3 4 5 6 7 8 9 10 11 12
## [12] 13 14 15 16 17 18 19 20 21 22 23
## [23] 24 25 26 27 28 29 30 31 32 33 34
## [34] 35 36 37 38 39 40 41 42 43 44 45
## [45] 46 47 48 49 50 51 52 53 54 55 56
## [56] 57 58 59 60 61 62 63 64 65 66 67
## [67] 68 69 70 71 72 73 74 75 76 77 78
## [78] 79 80 81 82 83 84 85 86 87 88 89
## [89] 90 91 92 93 94 95 96 97 98 99 100
## [100] 101 102 103 104 105 106 107 108 109 110 111
## [111] 112 113 114 115 116 117 118 119 120 121 122
## [122] 123 124 125 126 127 128 129 130 131 132 133
## [133] 134 135 136 137 138 139 140 141 142 143 144
## [144] 145 146 147 148 149 150 151 152 153 154 155
## [155] 156 157 158 159 160 161 162 163 164 165 166
## [166] 167 168 169 170 171 172 173 174 175 176 177
## [177] 178 179 180 181 182 183 184 185 186 187 188
## [188] 189 190 191 192 193 194 195 196 197 198 199
## [199] 200 201 202 203 204 205 206 207 208 209 210
## [210] 211 212 213 214 215 216 217 218 219 220 221
## [221] 222 223 224 225 226 227 228 229 230 231 232
## [232] 233 234 235 236 237 238 239 240 241 242 243
## [243] 244 245 246 247 248 249 250 251 252 253 254
## [254] 255 256 257 258 259 260 261 262 263 264 265
## [265] 266 267 268 269 270 271 272 273 274 275 276
## [276] 277 278 279 280 281 282 283 284 285 286 287
## [287] 288 289 290 291 292 293 294 295 296 297 298
## [298] 299 300 301 302 303 304 305 306 307 308 309
## [309] 310 311 312 313 314 315 316 317 318 319 320
## [320] 321 322 323 324 325 326 327 328 329 330 331
## [331] 332 333 334 335 336 337 338 339 340 341 342
## [342] 343 344 345 346 347 348 349 350 351 352 353
## [353] 354 355 356 357 358 359 360 361 362 363 364
## [364] 365 366 367 368 369 370 371 372 373 374 375
## [375] 376 377 378 379 380 381 382 383 384 385 386
## [386] 387 388 389 390 391 392 393 394 395 396 397
## [397] 398 399 400 401 402 403 404 405 406 407 408
## [408] 409 410 411 412 413 414 415 416 417 418 419
## [419] 420 421 422 423 424 425 426 427 428 429 430
## [430] 431 432 433 434 435 436 437 438 439 440 441
## [441] 442 443 444 445 446 447 448 449 450 451 452
## [452] 453 454 455 456 457 458 459 460 461 462 463
## [463] 464 465 466 467 468 469 470 471 472 473 474
## [474] 475 476 477 478 479 480 481 482 483 484 485
## [485] 486 487 488 489 490 491 492 493 494 495 496
## [496] 497 498 499 500 501 502 503 504 505 506 507
## [507] 508 509 510 511 512 513 514 515 516 517 518
## [518] 519 520 521 522 523 524 525 526 527 528 529
## [529] 530 531 532 533 534 535 536 537 538 539 540
## [540] 541 542 543 544 545 546 547 548 549 550 551
## [551] 552 553 554 555 556 557 558 559 560 561 562
## [562] 563 564 565 566 567 568 569 570 571 572 573
## [573] 574 575 576 577 578 579 580 581 582 583 584
## [584] 585 586 587 588 589 590 591 592 593 594 595
## [595] 596 597 598 599 600 601 602 603 604 605 606
## [606] 607 608 609 610 611 612 613 614 615 616 617
## [617] 618 619 620 621 622 623 624 625 626 627 628
## [628] 629 630 631 632 633 634 635 636 637 638 639
## [639] 640 641 642 643 644 645 646 647 648 649 650
## [650] 651 652 653 654 655 656 657 658 659 660 661
## [661] 662 663 664 665 666 667 668 669 670 671 672
## [672] 673 674 675 676 677 678 679 680 681 682 683
## [683] 684 685 686 687 688 689 690 691 692 693 694
## [694] 695 696 697 698 699 700 701 702 703 704 705
## [705] 706 707 708 709 710 711 712 713 714 715 716
## [716] 717 718 719 720 721 722 723 724 725 726 727
## [727] 728 729 730 731 732 733 734 735 736 737 738
## [738] 739 740 741 742 743 744 745 746 747 748 749
## [749] 750 751 752 753 754 755 756 757 758 759 760
## [760] 761 762 763 764 765 766 767 768 769 770 771
## [771] 772 773 774 775 776 777 778 779 780 781 782
## [782] 783 784 785 786 787 788 789 790 791 792 793
## [793] 794 795 796 797 798 799 800 801 802 803 804
## [804] 805 806 807 808 809 810 811 812 813 814 815
## [815] 816 817 818 819 820 821 822 823 824 825 826
## [826] 827 828 829 830 831 832 833 834 835 836 837
## [837] 838 839 840 841 842 843 844 845 846 847 848
## [848] 849 850 851 852 853 854 855 856 857 858 859
## [859] 860 861 862 863 864 865 866 867 868 869 870
## [870] 871 872 873 874 875 876 877 878 879 880 881
## [881] 882 883 884 885 886 887 888 889 890 891 892
## [892] 893 894 895 896 897 898 899 900 901 902 903
## [903] 904 905 906 907 908 909 910 911 912 913 914
## [914] 915 916 917 918 919 920 921 922 923 924 925
## [925] 926 927 928 929 930 931 932 933 934 935 936
## [936] 937 938 939 940 941 942 943 944 945 946 947
## [947] 948 949 950 951 952 953 954 955 956 957 958
## [958] 959 960 961 962 963 964 965 966 967 968 969
## [969] 970 971 972 973 974 975 976 977 978 979 980
## [980] 981 982 983 984 985 986 987 988 989 990 991
## [991] 992 993 994 995 996 997 998 999 1000
sort(unique(xgboost_grid$loss_reduction))
## [1] 0.0000000001003709 0.0000000001014648
## [3] 0.0000000001025765 0.0000000001035544
## [5] 0.0000000001038801 0.0000000001045954
## [7] 0.0000000001063629 0.0000000001066730
## [9] 0.0000000001078699 0.0000000001089197
## [11] 0.0000000001092603 0.0000000001104807
## [13] 0.0000000001121521 0.0000000001126890
## [15] 0.0000000001133438 0.0000000001148394
## [17] 0.0000000001154959 0.0000000001171594
## [19] 0.0000000001179795 0.0000000001192678
## [21] 0.0000000001196835 0.0000000001207433
## [23] 0.0000000001216881 0.0000000001228511
## [25] 0.0000000001238820 0.0000000001252990
## [27] 0.0000000001260908 0.0000000001277042
## [29] 0.0000000001284100 0.0000000001295687
## [31] 0.0000000001311005 0.0000000001318439
## [33] 0.0000000001331375 0.0000000001339335
## [35] 0.0000000001356624 0.0000000001367244
## [37] 0.0000000001379233 0.0000000001393855
## [39] 0.0000000001408460 0.0000000001412759
## [41] 0.0000000001435611 0.0000000001443726
## [43] 0.0000000001458603 0.0000000001466234
## [45] 0.0000000001486726 0.0000000001493173
## [47] 0.0000000001509915 0.0000000001525379
## [49] 0.0000000001540898 0.0000000001547454
## [51] 0.0000000001557071 0.0000000001571261
## [53] 0.0000000001582991 0.0000000001604477
## [55] 0.0000000001615407 0.0000000001628972
## [57] 0.0000000001647074 0.0000000001661858
## [59] 0.0000000001680070 0.0000000001685386
## [61] 0.0000000001701420 0.0000000001726516
## [63] 0.0000000001737167 0.0000000001757222
## [65] 0.0000000001770643 0.0000000001781239
## [67] 0.0000000001792314 0.0000000001821227
## [69] 0.0000000001835196 0.0000000001847342
## [71] 0.0000000001865264 0.0000000001882795
## [73] 0.0000000001897200 0.0000000001905422
## [75] 0.0000000001930229 0.0000000001951634
## [77] 0.0000000001972079 0.0000000001988609
## [79] 0.0000000002007496 0.0000000002024739
## [81] 0.0000000002035344 0.0000000002049404
## [83] 0.0000000002062438 0.0000000002097738
## [85] 0.0000000002103063 0.0000000002129699
## [87] 0.0000000002149780 0.0000000002167321
## [89] 0.0000000002185156 0.0000000002210458
## [91] 0.0000000002217390 0.0000000002233548
## [93] 0.0000000002263985 0.0000000002290897
## [95] 0.0000000002295921 0.0000000002314112
## [97] 0.0000000002347983 0.0000000002367576
## [99] 0.0000000002391506 0.0000000002398878
## [101] 0.0000000002438596 0.0000000002439187
## [103] 0.0000000002480901 0.0000000002484491
## [105] 0.0000000002508618 0.0000000002540447
## [107] 0.0000000002564714 0.0000000002574851
## [109] 0.0000000002603062 0.0000000002627540
## [111] 0.0000000002641965 0.0000000002677384
## [113] 0.0000000002701331 0.0000000002714398
## [115] 0.0000000002748826 0.0000000002771204
## [117] 0.0000000002800553 0.0000000002833555
## [119] 0.0000000002848882 0.0000000002875765
## [121] 0.0000000002909301 0.0000000002919212
## [123] 0.0000000002951856 0.0000000002983716
## [125] 0.0000000003013838 0.0000000003040598
## [127] 0.0000000003067816 0.0000000003069430
## [129] 0.0000000003111697 0.0000000003125791
## [131] 0.0000000003173626 0.0000000003200645
## [133] 0.0000000003218570 0.0000000003246659
## [135] 0.0000000003265657 0.0000000003293624
## [137] 0.0000000003328895 0.0000000003356776
## [139] 0.0000000003390307 0.0000000003420016
## [141] 0.0000000003454855 0.0000000003495657
## [143] 0.0000000003523194 0.0000000003534027
## [145] 0.0000000003576600 0.0000000003607887
## [147] 0.0000000003640129 0.0000000003690858
## [149] 0.0000000003711206 0.0000000003751834
## [151] 0.0000000003780132 0.0000000003804694
## [153] 0.0000000003826794 0.0000000003880635
## [155] 0.0000000003911118 0.0000000003953616
## [157] 0.0000000003975046 0.0000000004014764
## [159] 0.0000000004044716 0.0000000004076938
## [161] 0.0000000004119207 0.0000000004158168
## [163] 0.0000000004190678 0.0000000004245930
## [165] 0.0000000004267389 0.0000000004321219
## [167] 0.0000000004341373 0.0000000004402721
## [169] 0.0000000004427206 0.0000000004446161
## [171] 0.0000000004492024 0.0000000004548342
## [173] 0.0000000004601422 0.0000000004620914
## [175] 0.0000000004654938 0.0000000004702624
## [177] 0.0000000004732523 0.0000000004784224
## [179] 0.0000000004845458 0.0000000004888636
## [181] 0.0000000004929833 0.0000000004944690
## [183] 0.0000000004992975 0.0000000005052292
## [185] 0.0000000005098693 0.0000000005155720
## [187] 0.0000000005178103 0.0000000005219234
## [189] 0.0000000005277594 0.0000000005329706
## [191] 0.0000000005378760 0.0000000005408062
## [193] 0.0000000005445148 0.0000000005507425
## [195] 0.0000000005578093 0.0000000005626494
## [197] 0.0000000005665605 0.0000000005717076
## [199] 0.0000000005755540 0.0000000005796055
## [201] 0.0000000005884645 0.0000000005945527
## [203] 0.0000000005961731 0.0000000006022185
## [205] 0.0000000006080350 0.0000000006144901
## [207] 0.0000000006200043 0.0000000006268108
## [209] 0.0000000006296368 0.0000000006333905
## [211] 0.0000000006429706 0.0000000006477309
## [213] 0.0000000006550570 0.0000000006579538
## [215] 0.0000000006658135 0.0000000006673629
## [217] 0.0000000006734972 0.0000000006820054
## [219] 0.0000000006875172 0.0000000006926682
## [221] 0.0000000006978567 0.0000000007043171
## [223] 0.0000000007138086 0.0000000007167989
## [225] 0.0000000007274587 0.0000000007318686
## [227] 0.0000000007352103 0.0000000007453166
## [229] 0.0000000007527914 0.0000000007590418
## [231] 0.0000000007674815 0.0000000007685822
## [233] 0.0000000007788184 0.0000000007865982
## [235] 0.0000000007923630 0.0000000007980967
## [237] 0.0000000008061168 0.0000000008158619
## [239] 0.0000000008201865 0.0000000008246283
## [241] 0.0000000008388073 0.0000000008445916
## [243] 0.0000000008533189 0.0000000008613139
## [245] 0.0000000008625997 0.0000000008703833
## [247] 0.0000000008829669 0.0000000008875670
## [249] 0.0000000008948176 0.0000000009080757
## [251] 0.0000000009134040 0.0000000009214252
## [253] 0.0000000009284878 0.0000000009345257
## [255] 0.0000000009487694 0.0000000009515643
## [257] 0.0000000009630496 0.0000000009747607
## [259] 0.0000000009792246 0.0000000009886517
## [261] 0.0000000009948462 0.0000000010059343
## [263] 0.0000000010127802 0.0000000010253772
## [265] 0.0000000010341749 0.0000000010390196
## [267] 0.0000000010525169 0.0000000010625551
## [269] 0.0000000010714441 0.0000000010786506
## [271] 0.0000000010919791 0.0000000011011275
## [273] 0.0000000011068612 0.0000000011195219
## [275] 0.0000000011230143 0.0000000011395801
## [277] 0.0000000011521554 0.0000000011610215
## [279] 0.0000000011661978 0.0000000011785901
## [281] 0.0000000011842392 0.0000000011965624
## [283] 0.0000000012051091 0.0000000012229887
## [285] 0.0000000012274823 0.0000000012475030
## [287] 0.0000000012530763 0.0000000012620880
## [289] 0.0000000012708267 0.0000000012860888
## [291] 0.0000000013039974 0.0000000013146481
## [293] 0.0000000013178177 0.0000000013296943
## [295] 0.0000000013462592 0.0000000013586161
## [297] 0.0000000013732847 0.0000000013854430
## [299] 0.0000000013986867 0.0000000014039399
## [301] 0.0000000014177925 0.0000000014253032
## [303] 0.0000000014487474 0.0000000014604292
## [305] 0.0000000014737018 0.0000000014775358
## [307] 0.0000000015025486 0.0000000015079696
## [309] 0.0000000015239615 0.0000000015357840
## [311] 0.0000000015525701 0.0000000015614993
## [313] 0.0000000015754764 0.0000000015945415
## [315] 0.0000000016080452 0.0000000016148925
## [317] 0.0000000016332554 0.0000000016461158
## [319] 0.0000000016648314 0.0000000016844979
## [321] 0.0000000016893330 0.0000000017036599
## [323] 0.0000000017302323 0.0000000017352116
## [325] 0.0000000017523589 0.0000000017706071
## [327] 0.0000000017855664 0.0000000017991892
## [329] 0.0000000018092366 0.0000000018298699
## [331] 0.0000000018522530 0.0000000018717860
## [333] 0.0000000018744210 0.0000000018935384
## [335] 0.0000000019114027 0.0000000019407838
## [337] 0.0000000019484629 0.0000000019586570
## [339] 0.0000000019787767 0.0000000019996210
## [341] 0.0000000020263684 0.0000000020407407
## [343] 0.0000000020594295 0.0000000020705162
## [345] 0.0000000020987880 0.0000000021150481
## [347] 0.0000000021285646 0.0000000021457154
## [349] 0.0000000021639629 0.0000000021772524
## [351] 0.0000000022002176 0.0000000022225471
## [353] 0.0000000022445151 0.0000000022603759
## [355] 0.0000000022799459 0.0000000022992798
## [357] 0.0000000023327105 0.0000000023374394
## [359] 0.0000000023747534 0.0000000023835482
## [361] 0.0000000024153455 0.0000000024276727
## [363] 0.0000000024427747 0.0000000024710277
## [365] 0.0000000024890270 0.0000000025164386
## [367] 0.0000000025385250 0.0000000025676346
## [369] 0.0000000025969001 0.0000000026069931
## [371] 0.0000000026403492 0.0000000026524972
## [373] 0.0000000026847836 0.0000000027136310
## [375] 0.0000000027331327 0.0000000027483870
## [377] 0.0000000027740061 0.0000000027943273
## [379] 0.0000000028147653 0.0000000028490361
## [381] 0.0000000028682554 0.0000000029063280
## [383] 0.0000000029243187 0.0000000029489218
## [385] 0.0000000029678327 0.0000000030037047
## [387] 0.0000000030298024 0.0000000030524154
## [389] 0.0000000030869619 0.0000000031166995
## [391] 0.0000000031411990 0.0000000031544417
## [393] 0.0000000032077637 0.0000000032377681
## [395] 0.0000000032412487 0.0000000032950493
## [397] 0.0000000033199493 0.0000000033497554
## [399] 0.0000000033610238 0.0000000033907415
## [401] 0.0000000034319272 0.0000000034626106
## [403] 0.0000000034947559 0.0000000035337046
## [405] 0.0000000035566639 0.0000000035888589
## [407] 0.0000000036195803 0.0000000036606974
## [409] 0.0000000036811344 0.0000000037127308
## [411] 0.0000000037534106 0.0000000037932310
## [413] 0.0000000038192240 0.0000000038441458
## [415] 0.0000000038837562 0.0000000039017826
## [417] 0.0000000039619906 0.0000000039779068
## [419] 0.0000000040356788 0.0000000040480412
## [421] 0.0000000041036043 0.0000000041105382
## [423] 0.0000000041748078 0.0000000042107908
## [425] 0.0000000042416698 0.0000000042742461
## [427] 0.0000000043323482 0.0000000043440533
## [429] 0.0000000043997003 0.0000000044345968
## [431] 0.0000000044721965 0.0000000045237276
## [433] 0.0000000045599217 0.0000000045843188
## [435] 0.0000000046111420 0.0000000046575346
## [437] 0.0000000046967440 0.0000000047615082
## [439] 0.0000000047824389 0.0000000048328207
## [441] 0.0000000048645238 0.0000000049262940
## [443] 0.0000000049747435 0.0000000050243492
## [445] 0.0000000050373224 0.0000000050921286
## [447] 0.0000000051269283 0.0000000051703065
## [449] 0.0000000052494734 0.0000000053070869
## [451] 0.0000000053397809 0.0000000053864569
## [453] 0.0000000054298499 0.0000000054966118
## [455] 0.0000000055202197 0.0000000055855413
## [457] 0.0000000056304940 0.0000000056824647
## [459] 0.0000000056998518 0.0000000057916201
## [461] 0.0000000058423708 0.0000000058740602
## [463] 0.0000000059218193 0.0000000059830115
## [465] 0.0000000060496727 0.0000000061018275
## [467] 0.0000000061311563 0.0000000061947707
## [469] 0.0000000062319693 0.0000000063122360
## [471] 0.0000000063361838 0.0000000064043857
## [473] 0.0000000064495924 0.0000000065254637
## [475] 0.0000000065832834 0.0000000066750745
## [477] 0.0000000067235678 0.0000000067906583
## [479] 0.0000000068547868 0.0000000068978600
## [481] 0.0000000069524610 0.0000000070209618
## [483] 0.0000000070972569 0.0000000071634334
## [485] 0.0000000071722649 0.0000000072940815
## [487] 0.0000000072964485 0.0000000073622763
## [489] 0.0000000074509010 0.0000000075142968
## [491] 0.0000000075577165 0.0000000076341712
## [493] 0.0000000077143451 0.0000000078101597
## [495] 0.0000000078339848 0.0000000078992421
## [497] 0.0000000080070447 0.0000000080889758
## [499] 0.0000000081498025 0.0000000082509793
## [501] 0.0000000083268655 0.0000000083286610
## [503] 0.0000000084155737 0.0000000085210006
## [505] 0.0000000085905853 0.0000000086761148
## [507] 0.0000000087719366 0.0000000088564907
## [509] 0.0000000089090618 0.0000000089457520
## [511] 0.0000000090800372 0.0000000091662261
## [513] 0.0000000092430593 0.0000000093362518
## [515] 0.0000000094213616 0.0000000094738391
## [517] 0.0000000095320833 0.0000000095942820
## [519] 0.0000000097001421 0.0000000097663763
## [521] 0.0000000098925443 0.0000000099922934
## [523] 0.0000000100778708 0.0000000101881674
## [525] 0.0000000102392786 0.0000000103092826
## [527] 0.0000000104206982 0.0000000105454186
## [529] 0.0000000106124017 0.0000000106621542
## [531] 0.0000000108029379 0.0000000108532315
## [533] 0.0000000109688433 0.0000000110608545
## [535] 0.0000000111546611 0.0000000112609695
## [537] 0.0000000114360023 0.0000000114520100
## [539] 0.0000000116222062 0.0000000116633355
## [541] 0.0000000118490121 0.0000000119235215
## [543] 0.0000000119896111 0.0000000121059633
## [545] 0.0000000122395138 0.0000000122821765
## [547] 0.0000000124295209 0.0000000125336003
## [549] 0.0000000126116374 0.0000000127714303
## [551] 0.0000000128730468 0.0000000129694245
## [553] 0.0000000131209613 0.0000000132718204
## [555] 0.0000000133599242 0.0000000134661809
## [557] 0.0000000136122149 0.0000000137386265
## [559] 0.0000000137799745 0.0000000139392424
## [561] 0.0000000140638390 0.0000000142092253
## [563] 0.0000000143263265 0.0000000144873771
## [565] 0.0000000145607112 0.0000000147144331
## [567] 0.0000000148515336 0.0000000149343607
## [569] 0.0000000150846031 0.0000000152813095
## [571] 0.0000000154319719 0.0000000154835929
## [573] 0.0000000155980167 0.0000000158583719
## [575] 0.0000000159730314 0.0000000160493906
## [577] 0.0000000161635413 0.0000000163378209
## [579] 0.0000000165001285 0.0000000166955412
## [581] 0.0000000167377599 0.0000000169274485
## [583] 0.0000000170579379 0.0000000173009896
## [585] 0.0000000174541093 0.0000000175495996
## [587] 0.0000000177589268 0.0000000178255859
## [589] 0.0000000179783974 0.0000000181220389
## [591] 0.0000000184179657 0.0000000184548390
## [593] 0.0000000186215377 0.0000000188122575
## [595] 0.0000000190007834 0.0000000191769061
## [597] 0.0000000194259987 0.0000000195114863
## [599] 0.0000000197287908 0.0000000198752076
## [601] 0.0000000199847445 0.0000000202892794
## [603] 0.0000000204285491 0.0000000205388327
## [605] 0.0000000207967616 0.0000000210026634
## [607] 0.0000000212184303 0.0000000212247782
## [609] 0.0000000214301067 0.0000000216412088
## [611] 0.0000000219644461 0.0000000220843147
## [613] 0.0000000223482690 0.0000000225589592
## [615] 0.0000000227162777 0.0000000228496405
## [617] 0.0000000230563408 0.0000000233042930
## [619] 0.0000000235596094 0.0000000236752894
## [621] 0.0000000238832458 0.0000000241140481
## [623] 0.0000000243001951 0.0000000245067755
## [625] 0.0000000247351156 0.0000000250024865
## [627] 0.0000000252489032 0.0000000255116188
## [629] 0.0000000256926097 0.0000000258147166
## [631] 0.0000000260427296 0.0000000264465943
## [633] 0.0000000265254770 0.0000000268449820
## [635] 0.0000000271681947 0.0000000272606195
## [637] 0.0000000276346199 0.0000000276987654
## [639] 0.0000000280989198 0.0000000283352672
## [641] 0.0000000285809606 0.0000000287529633
## [643] 0.0000000290665930 0.0000000292683443
## [645] 0.0000000294997135 0.0000000297584502
## [647] 0.0000000299652536 0.0000000303004139
## [649] 0.0000000307327430 0.0000000309163641
## [651] 0.0000000312488733 0.0000000315004919
## [653] 0.0000000316816390 0.0000000321177207
## [655] 0.0000000324018740 0.0000000326013850
## [657] 0.0000000328704849 0.0000000332049659
## [659] 0.0000000333580498 0.0000000335987839
## [661] 0.0000000339070697 0.0000000342968243
## [663] 0.0000000345029064 0.0000000349064051
## [665] 0.0000000351107940 0.0000000356491600
## [667] 0.0000000360181206 0.0000000360851824
## [669] 0.0000000365997248 0.0000000368670189
## [671] 0.0000000371531029 0.0000000373766705
## [673] 0.0000000377409160 0.0000000380735309
## [675] 0.0000000385068953 0.0000000388607377
## [677] 0.0000000392574690 0.0000000394761294
## [679] 0.0000000398729137 0.0000000401650282
## [681] 0.0000000405262046 0.0000000410777517
## [683] 0.0000000414059821 0.0000000415830842
## [685] 0.0000000419845544 0.0000000426080818
## [687] 0.0000000429876798 0.0000000433037567
## [689] 0.0000000434912736 0.0000000441062801
## [691] 0.0000000443784294 0.0000000449401045
## [693] 0.0000000450247606 0.0000000454207967
## [695] 0.0000000459769056 0.0000000465087546
## [697] 0.0000000466945496 0.0000000473354476
## [699] 0.0000000475142690 0.0000000479066424
## [701] 0.0000000485465828 0.0000000489759177
## [703] 0.0000000495141910 0.0000000497737728
## [705] 0.0000000502902599 0.0000000508040200
## [707] 0.0000000510560085 0.0000000513888796
## [709] 0.0000000521122270 0.0000000525278394
## [711] 0.0000000529206425 0.0000000534308399
## [713] 0.0000000539026434 0.0000000545497710
## [715] 0.0000000546881228 0.0000000554716336
## [717] 0.0000000557707431 0.0000000561640168
## [719] 0.0000000565771149 0.0000000575210406
## [721] 0.0000000580424617 0.0000000583105128
## [723] 0.0000000587839251 0.0000000591897239
## [725] 0.0000000597266458 0.0000000605874442
## [727] 0.0000000607101326 0.0000000616145901
## [729] 0.0000000622905325 0.0000000623591497
## [731] 0.0000000632769334 0.0000000636590650
## [733] 0.0000000642618731 0.0000000649524314
## [735] 0.0000000651328409 0.0000000661332957
## [737] 0.0000000664318817 0.0000000671620139
## [739] 0.0000000675987309 0.0000000682966866
## [741] 0.0000000686690380 0.0000000694021906
## [743] 0.0000000700752572 0.0000000707189168
## [745] 0.0000000713244308 0.0000000718273310
## [747] 0.0000000725243292 0.0000000736067728
## [749] 0.0000000741745656 0.0000000746115240
## [751] 0.0000000751322751 0.0000000761524794
## [753] 0.0000000766667210 0.0000000771199204
## [755] 0.0000000780774706 0.0000000785879308
## [757] 0.0000000795950817 0.0000000800755026
## [759] 0.0000000807448368 0.0000000816215577
## [761] 0.0000000823891250 0.0000000826463802
## [763] 0.0000000840628207 0.0000000847965548
## [765] 0.0000000855836681 0.0000000856120517
## [767] 0.0000000867071652 0.0000000875101924
## [769] 0.0000000883762478 0.0000000887094942
## [771] 0.0000000896861942 0.0000000903130124
## [773] 0.0000000911216312 0.0000000923942835
## [775] 0.0000000929362526 0.0000000940550205
## [777] 0.0000000946726750 0.0000000955543896
## [779] 0.0000000962181775 0.0000000971864406
## [781] 0.0000000985785134 0.0000000991094748
## [783] 0.0000000996254179 0.0000001009874628
## [785] 0.0000001013727969 0.0000001023344756
## [787] 0.0000001036006490 0.0000001043524360
## [789] 0.0000001049475468 0.0000001065979328
## [791] 0.0000001069505701 0.0000001081727305
## [793] 0.0000001091087866 0.0000001098468706
## [795] 0.0000001106049201 0.0000001124471944
## [797] 0.0000001133387008 0.0000001144104474
## [799] 0.0000001150598415 0.0000001157057637
## [801] 0.0000001168768865 0.0000001179852213
## [803] 0.0000001188818874 0.0000001204478789
## [805] 0.0000001209241398 0.0000001218993194
## [807] 0.0000001234519339 0.0000001247830230
## [809] 0.0000001258043225 0.0000001266796088
## [811] 0.0000001274234800 0.0000001290090389
## [813] 0.0000001304894771 0.0000001319193521
## [815] 0.0000001328077093 0.0000001342076440
## [817] 0.0000001346248477 0.0000001365245151
## [819] 0.0000001373644162 0.0000001380809157
## [821] 0.0000001391046006 0.0000001411061918
## [823] 0.0000001420147225 0.0000001440426794
## [825] 0.0000001445536464 0.0000001456649089
## [827] 0.0000001472570424 0.0000001487904364
## [829] 0.0000001503076597 0.0000001506718796
## [831] 0.0000001528740675 0.0000001533390716
## [833] 0.0000001556854160 0.0000001561315431
## [835] 0.0000001576099182 0.0000001590154277
## [837] 0.0000001605711237 0.0000001625282249
## [839] 0.0000001634604483 0.0000001657762249
## [841] 0.0000001671530290 0.0000001686877416
## [843] 0.0000001692764257 0.0000001715380854
## [845] 0.0000001725927919 0.0000001743823636
## [847] 0.0000001764068590 0.0000001778130698
## [849] 0.0000001790478949 0.0000001797453911
## [851] 0.0000001820262989 0.0000001834238689
## [853] 0.0000001847424383 0.0000001861643254
## [855] 0.0000001884312157 0.0000001906125503
## [857] 0.0000001918359968 0.0000001934463142
## [859] 0.0000001951339787 0.0000001978836907
## [861] 0.0000001989630917 0.0000001998908189
## [863] 0.0000002023737332 0.0000002047209334
## [865] 0.0000002054117696 0.0000002075411702
## [867] 0.0000002095526270 0.0000002108597207
## [869] 0.0000002132523467 0.0000002153585725
## [871] 0.0000002166586454 0.0000002192165118
## [873] 0.0000002212455333 0.0000002222613169
## [875] 0.0000002250752202 0.0000002261692490
## [877] 0.0000002291907919 0.0000002311792846
## [879] 0.0000002337023339 0.0000002359206379
## [881] 0.0000002365782084 0.0000002399740563
## [883] 0.0000002422744867 0.0000002433781539
## [885] 0.0000002450938129 0.0000002470946438
## [887] 0.0000002504831655 0.0000002523054840
## [889] 0.0000002549803546 0.0000002572813876
## [891] 0.0000002591179570 0.0000002620863294
## [893] 0.0000002648508050 0.0000002652901625
## [895] 0.0000002691310062 0.0000002717134399
## [897] 0.0000002735729698 0.0000002765075513
## [899] 0.0000002786044651 0.0000002805160543
## [901] 0.0000002820895637 0.0000002848682626
## [903] 0.0000002877156760 0.0000002902702534
## [905] 0.0000002943670425 0.0000002959762086
## [907] 0.0000002982745032 0.0000003015915548
## [909] 0.0000003027039920 0.0000003063187162
## [911] 0.0000003091082580 0.0000003107587181
## [913] 0.0000003135081125 0.0000003185537042
## [915] 0.0000003209209371 0.0000003229028648
## [917] 0.0000003267486049 0.0000003276759135
## [919] 0.0000003309123593 0.0000003350698217
## [921] 0.0000003368983206 0.0000003412137557
## [923] 0.0000003440920916 0.0000003478432843
## [925] 0.0000003503075312 0.0000003524265114
## [927] 0.0000003556659048 0.0000003600456741
## [929] 0.0000003634291169 0.0000003654787513
## [931] 0.0000003704464334 0.0000003707269377
## [933] 0.0000003747452483 0.0000003788759621
## [935] 0.0000003833014011 0.0000003841806985
## [937] 0.0000003906735142 0.0000003914034676
## [939] 0.0000003951310878 0.0000003996532372
## [941] 0.0000004035151639 0.0000004058753825
## [943] 0.0000004113822305 0.0000004143055524
## [945] 0.0000004160245992 0.0000004195909841
## [947] 0.0000004265161377 0.0000004269194536
## [949] 0.0000004314076951 0.0000004377281545
## [951] 0.0000004413841373 0.0000004455119510
## [953] 0.0000004493126395 0.0000004514759172
## [955] 0.0000004574705795 0.0000004618498753
## [957] 0.0000004636301676 0.0000004674031244
## [959] 0.0000004728320220 0.0000004772644602
## [961] 0.0000004794540331 0.0000004845912877
## [963] 0.0000004893510295 0.0000004927220643
## [965] 0.0000004991253794 0.0000005032816344
## [967] 0.0000005061636921 0.0000005099903609
## [969] 0.0000005175332506 0.0000005199762698
## [971] 0.0000005260627337 0.0000005313329095
## [973] 0.0000005359645853 0.0000005407393026
## [975] 0.0000005455038465 0.0000005470935578
## [977] 0.0000005534499586 0.0000005609190977
## [979] 0.0000005629418214 0.0000005664604324
## [981] 0.0000005742414517 0.0000005799311929
## [983] 0.0000005834285996 0.0000005879137261
## [985] 0.0000005947588811 0.0000006005592097
## [987] 0.0000006072330202 0.0000006092224900
## [989] 0.0000006145588193 0.0000006204186130
## [991] 0.0000006279365082 0.0000006336515708
## [993] 0.0000006382205727 0.0000006407663880
## [995] 0.0000006486358399 0.0000006562360530
## [997] 0.0000006603580373 0.0000006646887284
## [999] 0.0000006695563087 0.0000006777199897
## [1001] 0.0000006855395277 0.0000006895054816
## [1003] 0.0000006940750642 0.0000007003839828
## [1005] 0.0000007089085530 0.0000007165033042
## [1007] 0.0000007188781663 0.0000007248460836
## [1009] 0.0000007323280581 0.0000007400240557
## [1011] 0.0000007492112680 0.0000007524426365
## [1013] 0.0000007588931728 0.0000007651646638
## [1015] 0.0000007741034429 0.0000007811457187
## [1017] 0.0000007879336411 0.0000007974552195
## [1019] 0.0000008039829784 0.0000008076566018
## [1021] 0.0000008189078211 0.0000008257050821
## [1023] 0.0000008333591958 0.0000008356680176
## [1025] 0.0000008453135724 0.0000008529170132
## [1027] 0.0000008615055772 0.0000008684830338
## [1029] 0.0000008791851550 0.0000008811576032
## [1031] 0.0000008946655963 0.0000009006475597
## [1033] 0.0000009080540751 0.0000009155544156
## [1035] 0.0000009257099094 0.0000009334976981
## [1037] 0.0000009373791713 0.0000009470425845
## [1039] 0.0000009573039836 0.0000009647489135
## [1041] 0.0000009728906337 0.0000009815977722
## [1043] 0.0000009916539725 0.0000010041118504
## [1045] 0.0000010096453613 0.0000010197120536
## [1047] 0.0000010285577241 0.0000010397475308
## [1049] 0.0000010430264082 0.0000010507632835
## [1051] 0.0000010594832127 0.0000010697790734
## [1053] 0.0000010817839742 0.0000010897598279
## [1055] 0.0000011059073080 0.0000011122034871
## [1057] 0.0000011200150781 0.0000011310296785
## [1059] 0.0000011447723196 0.0000011532041815
## [1061] 0.0000011615938494 0.0000011734944610
## [1063] 0.0000011791843758 0.0000011943436322
## [1065] 0.0000012077568868 0.0000012158105469
## [1067] 0.0000012281265302 0.0000012368493096
## [1069] 0.0000012498297153 0.0000012528609186
## [1071] 0.0000012708305366 0.0000012818477474
## [1073] 0.0000012973444247 0.0000013066109336
## [1075] 0.0000013198371995 0.0000013295082808
## [1077] 0.0000013440154997 0.0000013551794327
## [1079] 0.0000013596323736 0.0000013801241042
## [1081] 0.0000013804898675 0.0000014038550865
## [1083] 0.0000014144648746 0.0000014259823715
## [1085] 0.0000014311943124 0.0000014460429640
## [1087] 0.0000014680664980 0.0000014776064961
## [1089] 0.0000014895566743 0.0000014970937115
## [1091] 0.0000015084747375 0.0000015242263555
## [1093] 0.0000015352349438 0.0000015608683003
## [1095] 0.0000015632188315 0.0000015798153339
## [1097] 0.0000015928657314 0.0000016162893958
## [1099] 0.0000016192823885 0.0000016332502048
## [1101] 0.0000016571095980 0.0000016723016885
## [1103] 0.0000016786501121 0.0000016973527416
## [1105] 0.0000017119199512 0.0000017219508983
## [1107] 0.0000017430617288 0.0000017629460880
## [1109] 0.0000017814143816 0.0000017832222312
## [1111] 0.0000018089328706 0.0000018213207734
## [1113] 0.0000018384637568 0.0000018504216984
## [1115] 0.0000018677363307 0.0000018808023162
## [1117] 0.0000019055142712 0.0000019245542543
## [1119] 0.0000019440485807 0.0000019607329261
## [1121] 0.0000019689221001 0.0000019849661803
## [1123] 0.0000020024066637 0.0000020303729981
## [1125] 0.0000020399676085 0.0000020678109692
## [1127] 0.0000020752696089 0.0000020927771077
## [1129] 0.0000021137474743 0.0000021356245161
## [1131] 0.0000021586536828 0.0000021783592894
## [1133] 0.0000022019065730 0.0000022090083680
## [1135] 0.0000022267388333 0.0000022589303830
## [1137] 0.0000022652292480 0.0000022869654899
## [1139] 0.0000023112864879 0.0000023298275599
## [1141] 0.0000023479314218 0.0000023710780159
## [1143] 0.0000023907433868 0.0000024279741718
## [1145] 0.0000024416072021 0.0000024515626180
## [1147] 0.0000024800820216 0.0000025142610653
## [1149] 0.0000025201664718 0.0000025510867861
## [1151] 0.0000025801250324 0.0000026060039404
## [1153] 0.0000026079170252 0.0000026337628353
## [1155] 0.0000026529533153 0.0000026955884815
## [1157] 0.0000027030277235 0.0000027443967607
## [1159] 0.0000027591786655 0.0000027896688435
## [1161] 0.0000028019693297 0.0000028255490013
## [1163] 0.0000028633065415 0.0000028783831666
## [1165] 0.0000029014604895 0.0000029343708848
## [1167] 0.0000029575190224 0.0000029995051005
## [1169] 0.0000030250832323 0.0000030337003641
## [1171] 0.0000030715246146 0.0000031033063302
## [1173] 0.0000031252570111 0.0000031421649053
## [1175] 0.0000031906104293 0.0000032180339932
## [1177] 0.0000032250193771 0.0000032606041458
## [1179] 0.0000032966899413 0.0000033092669600
## [1181] 0.0000033534114134 0.0000033740161072
## [1183] 0.0000034078284727 0.0000034446635388
## [1185] 0.0000034782021934 0.0000035025306776
## [1187] 0.0000035282176586 0.0000035573459936
## [1189] 0.0000035890383565 0.0000036391351188
## [1191] 0.0000036623258739 0.0000037053227229
## [1193] 0.0000037164193506 0.0000037519006483
## [1195] 0.0000037993950583 0.0000038100007241
## [1197] 0.0000038493924947 0.0000038863912768
## [1199] 0.0000039457556244 0.0000039479763018
## [1201] 0.0000040129986098 0.0000040250808690
## [1203] 0.0000040847764848 0.0000041220116188
## [1205] 0.0000041390067311 0.0000041630033573
## [1207] 0.0000042250488788 0.0000042661300619
## [1209] 0.0000042901956561 0.0000043325199287
## [1211] 0.0000043589198768 0.0000043928060362
## [1213] 0.0000044635386630 0.0000044948434299
## [1215] 0.0000045248644106 0.0000045515692973
## [1217] 0.0000046123941342 0.0000046536104407
## [1219] 0.0000047036923536 0.0000047147678212
## [1221] 0.0000047719559450 0.0000048337516529
## [1223] 0.0000048441260716 0.0000049060231441
## [1225] 0.0000049221807479 0.0000050000888296
## [1227] 0.0000050390462638 0.0000050761997042
## [1229] 0.0000051109650317 0.0000051621437933
## [1231] 0.0000052300975241 0.0000052507909917
## [1233] 0.0000052972511251 0.0000053722209171
## [1235] 0.0000053853418019 0.0000054662531054
## [1237] 0.0000054814007271 0.0000055629962925
## [1239] 0.0000056018275457 0.0000056610626965
## [1241] 0.0000056851256184 0.0000057240036267
## [1243] 0.0000057843530216 0.0000058631538177
## [1245] 0.0000058961784121 0.0000059546111117
## [1247] 0.0000059956287500 0.0000060492124594
## [1249] 0.0000060882775853 0.0000061659908386
## [1251] 0.0000062148426234 0.0000062807682255
## [1253] 0.0000063292154456 0.0000063933638428
## [1255] 0.0000064645950721 0.0000064906534856
## [1257] 0.0000065471421343 0.0000066035527627
## [1259] 0.0000066984931758 0.0000067600300364
## [1261] 0.0000068154952077 0.0000068788464210
## [1263] 0.0000069393989094 0.0000069946826208
## [1265] 0.0000070566484240 0.0000071157021021
## [1267] 0.0000071585208660 0.0000072404294545
## [1269] 0.0000072636755073 0.0000073441681565
## [1271] 0.0000074015332522 0.0000074935510013
## [1273] 0.0000075818789740 0.0000075993894150
## [1275] 0.0000077086493613 0.0000077236009657
## [1277] 0.0000078346117998 0.0000079103070543
## [1279] 0.0000079714121865 0.0000080073654908
## [1281] 0.0000081182983736 0.0000081598456893
## [1283] 0.0000082197291365 0.0000083118750434
## [1285] 0.0000084095419196 0.0000084486404620
## [1287] 0.0000085498638394 0.0000086383788103
## [1289] 0.0000086946944935 0.0000088020046443
## [1291] 0.0000088525697461 0.0000089597969842
## [1293] 0.0000089852202508 0.0000091239862904
## [1295] 0.0000091936297174 0.0000092187343462
## [1297] 0.0000093621344574 0.0000094156409765
## [1299] 0.0000095381760804 0.0000095633371501
## [1301] 0.0000096935913835 0.0000097804072003
## [1303] 0.0000098352515943 0.0000099408565054
## [1305] 0.0000100136440434 0.0000101034438052
## [1307] 0.0000101627184497 0.0000102703421223
## [1309] 0.0000103706264530 0.0000104753134481
## [1311] 0.0000105420367720 0.0000106869758845
## [1313] 0.0000107865579045 0.0000108025697269
## [1315] 0.0000109157053028 0.0000110115249407
## [1317] 0.0000110869866718 0.0000112695108451
## [1319] 0.0000112848406342 0.0000114025103319
## [1321] 0.0000115795252045 0.0000116010625279
## [1323] 0.0000116890888531 0.0000118687197596
## [1325] 0.0000119236775327 0.0000120791155467
## [1327] 0.0000121253739610 0.0000122980255705
## [1329] 0.0000123719735741 0.0000124877624421
## [1331] 0.0000125634332724 0.0000127319327647
## [1333] 0.0000127938286933 0.0000129610724839
## [1335] 0.0000130008976439 0.0000131715671750
## [1337] 0.0000133218949393 0.0000133757316911
## [1339] 0.0000134764674721 0.0000136979926862
## [1341] 0.0000137607624487 0.0000138788044445
## [1343] 0.0000140493646916 0.0000141200151484
## [1345] 0.0000141977432789 0.0000143260424149
## [1347] 0.0000144996069305 0.0000146557615248
## [1349] 0.0000147090039883 0.0000149489451472
## [1351] 0.0000150290712714 0.0000152086174315
## [1353] 0.0000153625657951 0.0000153694456251
## [1355] 0.0000156187543014 0.0000157117891665
## [1357] 0.0000158650349536 0.0000159485284140
## [1359] 0.0000161590202412 0.0000162912318848
## [1361] 0.0000163980010560 0.0000165269401462
## [1363] 0.0000166416376477 0.0000168866238537
## [1365] 0.0000170179027448 0.0000171673870381
## [1367] 0.0000172812185635 0.0000174140180669
## [1369] 0.0000176534234013 0.0000177688653804
## [1371] 0.0000179278668249 0.0000181102720251
## [1373] 0.0000181696639314 0.0000184377205868
## [1375] 0.0000185183929088 0.0000188064535869
## [1377] 0.0000189180964061 0.0000190105023007
## [1379] 0.0000191711259282 0.0000193356667755
## [1381] 0.0000195232694664 0.0000197827991075
## [1383] 0.0000199244835895 0.0000200653400327
## [1385] 0.0000203523878954 0.0000204052009357
## [1387] 0.0000206415881696 0.0000208439874043
## [1389] 0.0000209881521547 0.0000211950342238
## [1391] 0.0000213328027735 0.0000216608978868
## [1393] 0.0000217037468438 0.0000219866325650
## [1395] 0.0000221262079791 0.0000224144054872
## [1397] 0.0000225475248914 0.0000227273774526
## [1399] 0.0000230173378356 0.0000232092254139
## [1401] 0.0000232754963344 0.0000235854400476
## [1403] 0.0000237041837738 0.0000240311691562
## [1405] 0.0000241703775741 0.0000244327226833
## [1407] 0.0000245812200907 0.0000248390959937
## [1409] 0.0000250476549088 0.0000253781753096
## [1411] 0.0000254426022739 0.0000256622509421
## [1413] 0.0000260441823166 0.0000261883741131
## [1415] 0.0000263309283238 0.0000267892799393
## [1417] 0.0000268198134197 0.0000272512004008
## [1419] 0.0000272932057147 0.0000276027224574
## [1421] 0.0000279042619761 0.0000281180517859
## [1423] 0.0000284005555976 0.0000287426113873
## [1425] 0.0000287843985731 0.0000291909121870
## [1427] 0.0000293558211349 0.0000295499414828
## [1429] 0.0000299955092427 0.0000303080643537
## [1431] 0.0000304705664081 0.0000305928323216
## [1433] 0.0000309179521134 0.0000311497687752
## [1435] 0.0000315953782056 0.0000317368564153
## [1437] 0.0000321483277946 0.0000325117596195
## [1439] 0.0000326460694700 0.0000329365437298
## [1441] 0.0000331685783201 0.0000337004161576
## [1443] 0.0000337636246614 0.0000342123326951
## [1445] 0.0000344718208947 0.0000346650707226
## [1447] 0.0000351787927476 0.0000355156284514
## [1449] 0.0000357165617194 0.0000359194266341
## [1451] 0.0000363870905593 0.0000366247397335
## [1453] 0.0000369547146934 0.0000371857083230
## [1455] 0.0000375013870308 0.0000379945279610
## [1457] 0.0000381817037507 0.0000387853270079
## [1459] 0.0000390414992486 0.0000393358582204
## [1461] 0.0000396864090898 0.0000399539215960
## [1463] 0.0000403608735349 0.0000407430937540
## [1465] 0.0000409888821528 0.0000413120144963
## [1467] 0.0000419054185240 0.0000421923346392
## [1469] 0.0000424689042993 0.0000429843036374
## [1471] 0.0000432154991151 0.0000437008040990
## [1473] 0.0000442348781939 0.0000446435538212
## [1475] 0.0000448089439179 0.0000453958167756
## [1477] 0.0000458188955496 0.0000461314873299
## [1479] 0.0000465882311846 0.0000469177712471
## [1481] 0.0000471479623739 0.0000478383631612
## [1483] 0.0000481549837808 0.0000487841853616
## [1485] 0.0000491147807881 0.0000496465437711
## [1487] 0.0000500718227082 0.0000504319799910
## [1489] 0.0000510122195823 0.0000514511102043
## [1491] 0.0000514906451146 0.0000521248961459
## [1493] 0.0000526740588313 0.0000532029642228
## [1495] 0.0000536930538356 0.0000542688655236
## [1497] 0.0000543153976429 0.0000549895743420
## [1499] 0.0000555052246880 0.0000558495850329
## [1501] 0.0000564751726354 0.0000570870722813
## [1503] 0.0000573008156620 0.0000579001227575
## [1505] 0.0000584638724389 0.0000590009685881
## [1507] 0.0000594616221527 0.0000599973151494
## [1509] 0.0000606417273865 0.0000612282625246
## [1511] 0.0000619251162829 0.0000620063740419
## [1513] 0.0000625281271167 0.0000632190109912
## [1515] 0.0000641922243649 0.0000642403934130
## [1517] 0.0000652547828609 0.0000655243211231
## [1519] 0.0000659720271730 0.0000667858620763
## [1521] 0.0000671127325971 0.0000678658590002
## [1523] 0.0000685905417654 0.0000693366865272
## [1525] 0.0000697208422070 0.0000707220768965
## [1527] 0.0000712689797520 0.0000716934477930
## [1529] 0.0000724556308013 0.0000728539923736
## [1531] 0.0000734792981098 0.0000739889701174
## [1533] 0.0000751623862309 0.0000752571263804
## [1535] 0.0000760805054720 0.0000768344691296
## [1537] 0.0000779231612655 0.0000783194078739
## [1539] 0.0000786558376615 0.0000794645886793
## [1541] 0.0000806091917458 0.0000809812841374
## [1543] 0.0000815921553627 0.0000824108540210
## [1545] 0.0000831887835905 0.0000840059884098
## [1547] 0.0000848168662353 0.0000854892425773
## [1549] 0.0000862845903217 0.0000870663570704
## [1551] 0.0000879581680345 0.0000882386506373
## [1553] 0.0000892447161055 0.0000901083028361
## [1555] 0.0000905892825286 0.0000916243301256
## [1557] 0.0000922372579657 0.0000934872748942
## [1559] 0.0000940899919969 0.0000948060443903
## [1561] 0.0000955610466271 0.0000967312024119
## [1563] 0.0000976723153877 0.0000988132047986
## [1565] 0.0000995896373299 0.0001000770983239
## [1567] 0.0001007439800296 0.0001016921136279
## [1569] 0.0001033327329884 0.0001041401817819
## [1571] 0.0001046729508917 0.0001055308996343
## [1573] 0.0001063286303187 0.0001077153854333
## [1575] 0.0001086637466223 0.0001094742811651
## [1577] 0.0001104632627363 0.0001112186136262
## [1579] 0.0001125377952118 0.0001136116196696
## [1581] 0.0001140217632439 0.0001155125847815
## [1583] 0.0001160405010798 0.0001179050836634
## [1585] 0.0001183237888410 0.0001198391812164
## [1587] 0.0001207854070154 0.0001217172787972
## [1589] 0.0001225458757065 0.0001243598907455
## [1591] 0.0001251644535683 0.0001260051019853
## [1593] 0.0001274929395783 0.0001288248545967
## [1595] 0.0001298184395964 0.0001310939438734
## [1597] 0.0001322207370810 0.0001331338835732
## [1599] 0.0001339491196691 0.0001354840187412
## [1601] 0.0001368406934958 0.0001380483239604
## [1603] 0.0001387837036241 0.0001400425932347
## [1605] 0.0001410325602940 0.0001424618310574
## [1607] 0.0001434863784034 0.0001453864475710
## [1609] 0.0001459423819577 0.0001479032722828
## [1611] 0.0001491201313532 0.0001510035066888
## [1613] 0.0001522406438688 0.0001534388103897
## [1615] 0.0001539502510936 0.0001564144585613
## [1617] 0.0001566340034531 0.0001592631931559
## [1619] 0.0001594454072655 0.0001617040467407
## [1621] 0.0001627401575870 0.0001642913303135
## [1623] 0.0001650722229208 0.0001675917341405
## [1625] 0.0001686294267726 0.0001703937695091
## [1627] 0.0001724365966923 0.0001738752811917
## [1629] 0.0001753388539392 0.0001764683564800
## [1631] 0.0001771600461505 0.0001796655171060
## [1633] 0.0001806699367891 0.0001832856792698
## [1635] 0.0001850010575364 0.0001852250915544
## [1637] 0.0001874719999069 0.0001893268973998
## [1639] 0.0001912932002953 0.0001933078853006
## [1641] 0.0001935225761380 0.0001961228242194
## [1643] 0.0001986586896313 0.0001995099627570
## [1645] 0.0002011558117000 0.0002022787633384
## [1647] 0.0002049268395054 0.0002070030673461
## [1649] 0.0002089471655954 0.0002104317662281
## [1651] 0.0002118965844711 0.0002142294002782
## [1653] 0.0002162063689814 0.0002177202007818
## [1655] 0.0002199702980434 0.0002212588603656
## [1657] 0.0002234346822789 0.0002256230365109
## [1659] 0.0002272254926530 0.0002289066497396
## [1661] 0.0002319853101695 0.0002342468940327
## [1663] 0.0002352930370982 0.0002384526237792
## [1665] 0.0002397894909146 0.0002426391014033
## [1667] 0.0002443404860039 0.0002458363099048
## [1669] 0.0002478580033817 0.0002505934207655
## [1671] 0.0002535838094686 0.0002549429716660
## [1673] 0.0002580322453423 0.0002591375771985
## [1675] 0.0002620663818024 0.0002639683875356
## [1677] 0.0002666142140784 0.0002698271277458
## [1679] 0.0002724064901202 0.0002745853201759
## [1681] 0.0002766857841025 0.0002800733017601
## [1683] 0.0002804222747410 0.0002836707664747
## [1685] 0.0002871578183850 0.0002884930280640
## [1687] 0.0002906800000839 0.0002955522602292
## [1689] 0.0002957090263610 0.0002991716077438
## [1691] 0.0003020410167657 0.0003050249473651
## [1693] 0.0003066363490475 0.0003114799660149
## [1695] 0.0003132999901534 0.0003152908548669
## [1697] 0.0003195855622748 0.0003202275798978
## [1699] 0.0003233226767435 0.0003264787577877
## [1701] 0.0003308578749671 0.0003315821647501
## [1703] 0.0003366509153568 0.0003385039921332
## [1705] 0.0003407147950279 0.0003439219284699
## [1707] 0.0003480546198920 0.0003500475379894
## [1709] 0.0003551333020777 0.0003566526424559
## [1711] 0.0003617670339889 0.0003641654640215
## [1713] 0.0003677849007663 0.0003692284745659
## [1715] 0.0003742443616711 0.0003770736130611
## [1717] 0.0003800002101261 0.0003823478029250
## [1719] 0.0003856569046936 0.0003906744367358
## [1721] 0.0003933246492473 0.0003982630871693
## [1723] 0.0003991362801083 0.0004058567155562
## [1725] 0.0004061799039677 0.0004100190684262
## [1727] 0.0004142411055033 0.0004175224514632
## [1729] 0.0004236425251131 0.0004258130509335
## [1731] 0.0004314388928217 0.0004357807920225
## [1733] 0.0004371260964370 0.0004412275364657
## [1735] 0.0004462216842688 0.0004505034915304
## [1737] 0.0004553778860698 0.0004588730213978
## [1739] 0.0004623249658516 0.0004657793454797
## [1741] 0.0004680452653767 0.0004755261294577
## [1743] 0.0004787614019810 0.0004831555509013
## [1745] 0.0004860600584501 0.0004918366971974
## [1747] 0.0004947821444697 0.0004991782487981
## [1749] 0.0005053755702777 0.0005065493763389
## [1751] 0.0005152058303298 0.0005183756436158
## [1753] 0.0005234248703910 0.0005279532415223
## [1755] 0.0005326901193526 0.0005362102845721
## [1757] 0.0005412320929590 0.0005470555821034
## [1759] 0.0005517279710305 0.0005572594512256
## [1761] 0.0005596959240702 0.0005666347569187
## [1763] 0.0005707908940847 0.0005749562860136
## [1765] 0.0005781578145093 0.0005856278754810
## [1767] 0.0005919697160331 0.0005959006167422
## [1769] 0.0006012416148569 0.0006056788731117
## [1771] 0.0006135333551772 0.0006184442592879
## [1773] 0.0006204994905207 0.0006300426026914
## [1775] 0.0006332027741938 0.0006395587746896
## [1777] 0.0006435412349358 0.0006485977488621
## [1779] 0.0006551880833638 0.0006616780202495
## [1781] 0.0006707503114725 0.0006763257484576
## [1783] 0.0006825050249275 0.0006893013484941
## [1785] 0.0006954599925563 0.0006995507903963
## [1787] 0.0007068198659843 0.0007120773466187
## [1789] 0.0007168631057478 0.0007224008872330
## [1791] 0.0007320534912497 0.0007344810240790
## [1793] 0.0007404451097999 0.0007487074767074
## [1795] 0.0007567449283437 0.0007607932711028
## [1797] 0.0007687041008437 0.0007756558084744
## [1799] 0.0007847283316719 0.0007922987141083
## [1801] 0.0007947247874686 0.0008040354507793
## [1803] 0.0008090377467076 0.0008225200303472
## [1805] 0.0008237549649020 0.0008342208870697
## [1807] 0.0008445289103502 0.0008523808408570
## [1809] 0.0008590312870036 0.0008600438982363
## [1811] 0.0008676459679250 0.0008764360135030
## [1813] 0.0008903193848885 0.0008930764316047
## [1815] 0.0009049045228708 0.0009130851183178
## [1817] 0.0009165790114164 0.0009277488663407
## [1819] 0.0009385134752209 0.0009442969913795
## [1821] 0.0009538270769384 0.0009592249554692
## [1823] 0.0009666592804404 0.0009741339143414
## [1825] 0.0009830268340796 0.0009960471242734
## [1827] 0.0010020292743922 0.0010145392479679
## [1829] 0.0010231145064038 0.0010305128684459
## [1831] 0.0010441850154814 0.0010491668598042
## [1833] 0.0010580752064373 0.0010672532899739
## [1835] 0.0010803409703970 0.0010885700574567
## [1837] 0.0010974008735421 0.0011012743122085
## [1839] 0.0011191160205202 0.0011261144698460
## [1841] 0.0011340221595341 0.0011429680275363
## [1843] 0.0011598232967737 0.0011693612109794
## [1845] 0.0011775397990484 0.0011873890001775
## [1847] 0.0011996235340287 0.0012095803485381
## [1849] 0.0012233310039213 0.0012265873333456
## [1851] 0.0012381301538104 0.0012496358777814
## [1853] 0.0012667328013074 0.0012780184121256
## [1855] 0.0012832718644770 0.0013006162678986
## [1857] 0.0013053956356843 0.0013197901702007
## [1859] 0.0013367771203542 0.0013406242461564
## [1861] 0.0013565333669136 0.0013695972658792
## [1863] 0.0013737742043344 0.0013922522276864
## [1865] 0.0014001091904843 0.0014202345213681
## [1867] 0.0014309653213101 0.0014354083681341
## [1869] 0.0014570733773161 0.0014656921103622
## [1871] 0.0014749113071435 0.0014946606945635
## [1873] 0.0015041616314423 0.0015227786620431
## [1875] 0.0015282423969482 0.0015432713116946
## [1877] 0.0015647611993401 0.0015730905158939
## [1879] 0.0015885355416262 0.0015968900902874
## [1881] 0.0016140245140918 0.0016267257341304
## [1883] 0.0016480911615655 0.0016602786241458
## [1885] 0.0016688306231794 0.0016867687619192
## [1887] 0.0016984525038197 0.0017194878899600
## [1889] 0.0017346213427141 0.0017516424342522
## [1891] 0.0017588882209403 0.0017818305869015
## [1893] 0.0017971726004055 0.0018165792720651
## [1895] 0.0018212527846394 0.0018383158239219
## [1897] 0.0018586432228983 0.0018823782011229
## [1899] 0.0018885461386006 0.0019114203000341
## [1901] 0.0019334323511646 0.0019512235791986
## [1903] 0.0019635871053645 0.0019832138392821
## [1905] 0.0019934662592249 0.0020161295020648
## [1907] 0.0020255447560141 0.0020588894915178
## [1909] 0.0020740282771066 0.0020793504476130
## [1911] 0.0021098037899582 0.0021329991133562
## [1913] 0.0021375480988929 0.0021687883319262
## [1915] 0.0021837308334790 0.0022029916512151
## [1917] 0.0022305908042598 0.0022405610339422
## [1919] 0.0022540383803140 0.0022819921818135
## [1921] 0.0023094645110486 0.0023146257692363
## [1923] 0.0023336595589986 0.0023527776705438
## [1925] 0.0023742728008781 0.0023942573188586
## [1927] 0.0024180395416107 0.0024400445562841
## [1929] 0.0024774655192747 0.0024948725681560
## [1931] 0.0025221797235103 0.0025254459476224
## [1933] 0.0025631788663938 0.0025903552436296
## [1935] 0.0026026998098119 0.0026262226835298
## [1937] 0.0026421674201308 0.0026822969012231
## [1939] 0.0027036305021564 0.0027194700661184
## [1941] 0.0027369823336233 0.0027590549233998
## [1943] 0.0028064857669007 0.0028153913418537
## [1945] 0.0028418249279632 0.0028789587002845
## [1947] 0.0028965258336709 0.0029128295009950
## [1949] 0.0029555738097357 0.0029730304003465
## [1951] 0.0030074050525353 0.0030268107560653
## [1953] 0.0030482019811324 0.0030862235704343
## [1955] 0.0031189223026904 0.0031305816250039
## [1957] 0.0031570172428751 0.0031830132707298
## [1959] 0.0032264732561025 0.0032589953216980
## [1961] 0.0032651963564833 0.0033131996488188
## [1963] 0.0033248813977464 0.0033650130781625
## [1965] 0.0033833985274594 0.0034105038281141
## [1967] 0.0034533167338398 0.0034971707272103
## [1969] 0.0035196422545881 0.0035562129227683
## [1971] 0.0035723256764001 0.0036143075582686
## [1973] 0.0036292763039536 0.0036650564630012
## [1975] 0.0037117044165842 0.0037387447326166
## [1977] 0.0037592537517192 0.0038143563540336
## [1979] 0.0038562276692378 0.0038799446454217
## [1981] 0.0038914338624386 0.0039369780714554
## [1983] 0.0039723627253115 0.0040018829385872
## [1985] 0.0040370874418277 0.0040678963232399
## [1987] 0.0041061442886439 0.0041428785249451
## [1989] 0.0041980027276949 0.0042448530903950
## [1991] 0.0042505730018866 0.0043050853194386
## [1993] 0.0043358968745595 0.0043796169860893
## [1995] 0.0044112853257709 0.0044805093336060
## [1997] 0.0044933483848922 0.0045387998401028
## [1999] 0.0045920555976425 0.0046406293477531
## [2001] 0.0046745696667156 0.0047223745745260
## [2003] 0.0047466533037074 0.0047991883546150
## [2005] 0.0048386083644589 0.0048696346720973
## [2007] 0.0048943861779146 0.0049755099257207
## [2009] 0.0049976149653831 0.0050344920209274
## [2011] 0.0050988397013098 0.0051209538178042
## [2013] 0.0051832853251467 0.0052303914956443
## [2015] 0.0052778771264183 0.0053351038950020
## [2017] 0.0053502056327937 0.0054260767027094
## [2019] 0.0054485601256965 0.0054947226798094
## [2021] 0.0055731048031882 0.0056167195291372
## [2023] 0.0056820331248275 0.0057353056175387
## [2025] 0.0057646993878253 0.0058157486244080
## [2027] 0.0058634526293537 0.0058937865976233
## [2029] 0.0059827448538248 0.0060157787495804
## [2031] 0.0060584307524860 0.0061146225624935
## [2033] 0.0061980457633881 0.0062122341488560
## [2035] 0.0062889328286486 0.0063454715001741
## [2037] 0.0064283700301717 0.0064530765325813
## [2039] 0.0065130570838154 0.0065559491088631
## [2041] 0.0066366954442119 0.0066905897119201
## [2043] 0.0067533357743183 0.0067845530269523
## [2045] 0.0069017469215093 0.0069518747130684
## [2047] 0.0070270769801064 0.0070562136442686
## [2049] 0.0070927163865409 0.0072147594264929
## [2051] 0.0072490101044814 0.0073415918950496
## [2053] 0.0073957456672911 0.0074173865170568
## [2055] 0.0074880462739777 0.0075706686653770
## [2057] 0.0076330020047291 0.0077150154054020
## [2059] 0.0077889166542643 0.0078551183723196
## [2061] 0.0079136194577228 0.0080133628039661
## [2063] 0.0080848242704475 0.0081417268644172
## [2065] 0.0082000470972326 0.0082516511654591
## [2067] 0.0083320308959295 0.0084519869045414
## [2069] 0.0085137697165264 0.0085422797405713
## [2071] 0.0086348352990589 0.0087080217314450
## [2073] 0.0087695055370073 0.0088893504668397
## [2075] 0.0089375501265384 0.0090427172995411
## [2077] 0.0090965198889992 0.0092299708068568
## [2079] 0.0092538045149624 0.0093823264075212
## [2081] 0.0094772198026846 0.0095414594628477
## [2083] 0.0096387005303313 0.0097077621675174
## [2085] 0.0097616165652313 0.0098846576825291
## [2087] 0.0099393913067481 0.0100810658148537
## [2089] 0.0100940598205848 0.0102513361235323
## [2091] 0.0103542578697022 0.0104235036351813
## [2093] 0.0104947271873430 0.0105583952183981
## [2095] 0.0106522904093205 0.0107869782925308
## [2097] 0.0108731337128998 0.0109946651671287
## [2099] 0.0110925443112506 0.0112178808446680
## [2101] 0.0112293452411876 0.0114184809958570
## [2103] 0.0115076432920040 0.0115488848527425
## [2105] 0.0116338875162573 0.0117929569993813
## [2107] 0.0118745472803033 0.0119616567274134
## [2109] 0.0121380117488416 0.0121634675956130
## [2111] 0.0122800966744388 0.0123873505965913
## [2113] 0.0125016415356579 0.0126739975358230
## [2115] 0.0127970859065967 0.0128895372599376
## [2117] 0.0130203087326888 0.0130538014622816
## [2119] 0.0131630700180779 0.0133809943511270
## [2121] 0.0133945716783550 0.0135332459424873
## [2123] 0.0137012378595739 0.0138005448053235
## [2125] 0.0139901991389208 0.0140254042785405
## [2127] 0.0141301188439485 0.0143268641944811
## [2129] 0.0143680195725116 0.0145364815232774
## [2131] 0.0147386973521324 0.0148411682664509
## [2133] 0.0149937086278075 0.0150473594919857
## [2135] 0.0152087872205568 0.0153183350617188
## [2137] 0.0155368537117579 0.0156623358795761
## [2139] 0.0158043414737586 0.0159430766545128
## [2141] 0.0160642038472681 0.0162245535264473
## [2143] 0.0163692231169518 0.0164359626923138
## [2145] 0.0166472359464827 0.0167214661380716
## [2147] 0.0169054775401423 0.0171162131980791
## [2149] 0.0172875008095656 0.0173045387313278
## [2151] 0.0175179808491575 0.0177446838084163
## [2153] 0.0178235629667238 0.0180089575690917
## [2155] 0.0181703018004801 0.0183608663840738
## [2157] 0.0184624437801987 0.0186816822464265
## [2159] 0.0187366574649017 0.0189755266934624
## [2161] 0.0190876719168947 0.0193879585933526
## [2163] 0.0195184461155453 0.0196675821803129
## [2165] 0.0198465769950151 0.0199787656169547
## [2167] 0.0201290850271841 0.0202750514283311
## [2169] 0.0205761730404462 0.0206351569593559
## [2171] 0.0208340348494903 0.0210683742128772
## [2173] 0.0212074426182833 0.0214269765012985
## [2175] 0.0216270526089761 0.0217896732779255
## [2177] 0.0221027073037800 0.0222445665298796
## [2179] 0.0224119747919033 0.0226806102885660
## [2181] 0.0228462234580169 0.0230220245765358
## [2183] 0.0232691599201816 0.0235025621608198
## [2185] 0.0237432549902311 0.0238784857999368
## [2187] 0.0240651108621287 0.0242885066195202
## [2189] 0.0245976860473630 0.0247093396933382
## [2191] 0.0249352498643368 0.0251525106598681
## [2193] 0.0253053207438215 0.0256589695110369
## [2195] 0.0259245061448767 0.0260743862657211
## [2197] 0.0262973569476185 0.0265608318802435
## [2199] 0.0267931829562861 0.0270947764097482
## [2201] 0.0271347677617786 0.0274683648871782
## [2203] 0.0277519096655098 0.0279497591051630
## [2205] 0.0281919141942659 0.0284128505577479
## [2207] 0.0286338348652397 0.0290139108143602
## [2209] 0.0292292153510155 0.0294394508938241
## [2211] 0.0298022932714797 0.0299994180143458
## [2213] 0.0302489192376182 0.0304801196815110
## [2215] 0.0307905185493600 0.0309749196103937
## [2217] 0.0314072690704337 0.0317049080630592
## [2219] 0.0319966924079404 0.0321287536857364
## [2221] 0.0323805665456175 0.0326817663716620
## [2223] 0.0330966907738080 0.0332959409441674
## [2225] 0.0335445423781663 0.0340837141384211
## [2227] 0.0344035382351231 0.0345754952278875
## [2229] 0.0347533069947767 0.0352078183667079
## [2231] 0.0355237044717520 0.0357994674060406
## [2233] 0.0361267559877693 0.0364002679778295
## [2235] 0.0367678054355211 0.0371985910106314
## [2237] 0.0373860075452863 0.0378015263422808
## [2239] 0.0381101047910428 0.0383731417984007
## [2241] 0.0387590738717706 0.0392011246048470
## [2243] 0.0395012822124655 0.0399352172660083
## [2245] 0.0402870688886458 0.0403495338895091
## [2247] 0.0408550027828637 0.0412055362768347
## [2249] 0.0416908042714736 0.0420441461514640
## [2251] 0.0423633427493191 0.0425728716404998
## [2253] 0.0432884818757161 0.0435625590854828
## [2255] 0.0439621290687222 0.0442277455286685
## [2257] 0.0447869728869722 0.0451190800173307
## [2259] 0.0454087789629599 0.0457620933173591
## [2261] 0.0463472126052932 0.0466672328640011
## [2263] 0.0471959608476050 0.0473589720915592
## [2265] 0.0479936269371747 0.0484567787408335
## [2267] 0.0485699316452690 0.0492656227759697
## [2269] 0.0495397450341902 0.0501140253269859
## [2271] 0.0505091613774945 0.0508859508638430
## [2273] 0.0516040850177740 0.0518503994219515
## [2275] 0.0523701582407412 0.0529951265866365
## [2277] 0.0530958055877111 0.0537113100800809
## [2279] 0.0540075831658465 0.0546675784700290
## [2281] 0.0552359164683343 0.0554565962061999
## [2283] 0.0561405645948534 0.0566788932896043
## [2285] 0.0571794565264733 0.0577446435838127
## [2287] 0.0584423461870018 0.0585540083291946
## [2289] 0.0594175635400998 0.0596330080058317
## [2291] 0.0601441137810018 0.0606213300903281
## [2293] 0.0612240904998228 0.0621611481954532
## [2295] 0.0625529314795937 0.0628957831857518
## [2297] 0.0633230395101129 0.0642329179149700
## [2299] 0.0647954752074508 0.0653762008091707
## [2301] 0.0659158568347947 0.0662982060103182
## [2303] 0.0670405965445323 0.0674560391496305
## [2305] 0.0679426386126732 0.0691011094447686
## [2307] 0.0695862593994218 0.0700348235666996
## [2309] 0.0709719822076361 0.0710709636564212
## [2311] 0.0720425384370208 0.0726604235518440
## [2313] 0.0731140412467432 0.0737033039447861
## [2315] 0.0743167446008720 0.0748813913398054
## [2317] 0.0757431631342879 0.0761852351820910
## [2319] 0.0771230512973290 0.0781575968027379
## [2321] 0.0785096859539053 0.0789736425579738
## [2323] 0.0796717053863266 0.0804181100070821
## [2325] 0.0814905237757490 0.0820035084338874
## [2327] 0.0826387041735839 0.0834437330248827
## [2329] 0.0844353449308884 0.0849444617560706
## [2331] 0.0857098768556448 0.0863477688816819
## [2333] 0.0876944666416904 0.0880837355967353
## [2335] 0.0892237903852143 0.0894172923241331
## [2337] 0.0905260574107198 0.0915667178197063
## [2339] 0.0920102254890910 0.0926446188680056
## [2341] 0.0935945268960530 0.0947561638916551
## [2343] 0.0957695624491581 0.0961067268513308
## [2345] 0.0970800786915295 0.0975578122467073
## [2347] 0.0988234539568269 0.0996799681015118
## [2349] 0.1004456458254461 0.1015233420787839
## [2351] 0.1020820933014093 0.1034777287302212
## [2353] 0.1037848817924425 0.1050134473980267
## [2355] 0.1059461481494701 0.1071242965489497
## [2357] 0.1082866023404190 0.1092168441025322
## [2359] 0.1099716674100552 0.1112813309366483
## [2361] 0.1116737445825471 0.1124727699073136
## [2363] 0.1133924119463966 0.1149180429969463
## [2365] 0.1154832570078077 0.1167321210888793
## [2367] 0.1183209337638792 0.1184510292185230
## [2369] 0.1200808138372073 0.1206217797229798
## [2371] 0.1220566200295363 0.1231822507516343
## [2373] 0.1242079728476080 0.1255157129751723
## [2375] 0.1268725720530800 0.1280127309943789
## [2377] 0.1287194743970066 0.1302736321404318
## [2379] 0.1312582164282244 0.1316925355990486
## [2381] 0.1336137304340368 0.1341301658151073
## [2383] 0.1361290515632851 0.1369266135886104
## [2385] 0.1383753641147875 0.1392215213171716
## [2387] 0.1411353988527879 0.1413358911364674
## [2389] 0.1432844563954992 0.1441140866151098
## [2391] 0.1452624467116103 0.1470556788513906
## [2393] 0.1482135051931777 0.1499341575123891
## [2395] 0.1505962967076281 0.1526375990077739
## [2397] 0.1531396774846516 0.1547101413472804
## [2399] 0.1560846686616034 0.1580062504502047
## [2401] 0.1589716216270878 0.1612354181874350
## [2403] 0.1615884078069837 0.1628319383099704
## [2405] 0.1655516627463616 0.1659777700433266
## [2407] 0.1678641722405305 0.1692190517944808
## [2409] 0.1714803735517457 0.1726850389084674
## [2411] 0.1735208598949071 0.1746837874408715
## [2413] 0.1763062266383296 0.1788747382130932
## [2415] 0.1801755343829847 0.1820233748111747
## [2417] 0.1838667709729679 0.1852669859594969
## [2419] 0.1872257512275678 0.1880706025412250
## [2421] 0.1904937713570423 0.1908327908336385
## [2423] 0.1935512621077075 0.1947530417493721
## [2425] 0.1972447135014306 0.1991394193211364
## [2427] 0.2005800086378969 0.2028687531852697
## [2429] 0.2040188631372455 0.2062400846663737
## [2431] 0.2065935435856658 0.2096578092141072
## [2433] 0.2107950870719580 0.2134964600937606
## [2435] 0.2145285497470010 0.2170944390262398
## [2437] 0.2194292925956881 0.2210676059953280
## [2439] 0.2221987444451440 0.2239213852389969
## [2441] 0.2264934075540360 0.2278262296559298
## [2443] 0.2302599206080763 0.2332858388875157
## [2445] 0.2342411135640197 0.2358336577967809
## [2447] 0.2394148929878203 0.2402766388093142
## [2449] 0.2441385042678969 0.2456507446110571
## [2451] 0.2465728631480242 0.2492042787197882
## [2453] 0.2519431463411913 0.2542977462619647
## [2455] 0.2569607179687109 0.2593169912278235
## [2457] 0.2605372190159673 0.2639262633065218
## [2459] 0.2662161500842395 0.2679728011273860
## [2461] 0.2710931089995698 0.2728747270331937
## [2463] 0.2757674008454600 0.2780240753996407
## [2465] 0.2803005750813294 0.2834715840877180
## [2467] 0.2856580440696984 0.2886844604501793
## [2469] 0.2895061875099996 0.2919594357709673
## [2471] 0.2945741276775497 0.2967951737162096
## [2473] 0.3001096300567537 0.3036116895938538
## [2475] 0.3062777718837845 0.3093237755286243
## [2477] 0.3113839566340761 0.3130913136042018
## [2479] 0.3164513470558318 0.3184586868945961
## [2481] 0.3220919704781496 0.3266157779726614
## [2483] 0.3295411018384976 0.3310036070220642
## [2485] 0.3330167335788876 0.3367855153062288
## [2487] 0.3392230534185386 0.3436427717073477
## [2489] 0.3467933098033615 0.3486988898688836
## [2491] 0.3527531235071877 0.3541718437870099
## [2493] 0.3592513733597582 0.3611850069957965
## [2495] 0.3656497139414300 0.3684563317210495
## [2497] 0.3705326485693404 0.3738678695348455
## [2499] 0.3783736586178837 0.3816350575363487
## [2501] 0.3850865673161579 0.3897577875246090
## [2503] 0.3926492778592067 0.3955149710145359
## [2505] 0.3989088314473441 0.4010111414621948
## [2507] 0.4042428193765622 0.4086566383149753
## [2509] 0.4146629277532566 0.4184338559389979
## [2511] 0.4204772753093061 0.4249946765271400
## [2513] 0.4274126766642263 0.4298985086056437
## [2515] 0.4365736968475039 0.4391706040343296
## [2517] 0.4451431724130488 0.4453014848944360
## [2519] 0.4500118769846187 0.4535834553305648
## [2521] 0.4587698135608699 0.4636767951183875
## [2523] 0.4677046983571329 0.4704708151458587
## [2525] 0.4757605146740546 0.4802725670600540
## [2527] 0.4839723076273363 0.4882990149344322
## [2529] 0.4941153347281752 0.4972222500970619
## [2531] 0.5017221538368645 0.5045750133096636
## [2533] 0.5085397661400403 0.5156864030720936
## [2535] 0.5202580266362539 0.5235080734235280
## [2537] 0.5276697729151744 0.5346385766331104
## [2539] 0.5361808547486796 0.5441390148311248
## [2541] 0.5484599902452032 0.5504575258894692
## [2543] 0.5580492835341822 0.5630945690271607
## [2545] 0.5689815962846504 0.5704231089712614
## [2547] 0.5757658378124723 0.5811724698539750
## [2549] 0.5865010267950127 0.5908297609492791
## [2551] 0.5956625257386342 0.6035334565719274
## [2553] 0.6075130024345116 0.6148007686362331
## [2555] 0.6208355821283462 0.6240870793468091
## [2557] 0.6313482245256035 0.6342424401161010
## [2559] 0.6416139080168631 0.6450101055409397
## [2561] 0.6540437824008529 0.6583390967499183
## [2563] 0.6646775282899869 0.6730576575259563
## [2565] 0.6759866977324515 0.6845223818514137
## [2567] 0.6912048229994370 0.6957137975029442
## [2569] 0.6982609032548323 0.7055198463495512
## [2571] 0.7137084988403872 0.7230213997996791
## [2573] 0.7280281822190297 0.7332717205722392
## [2575] 0.7376079759285514 0.7441159056520871
## [2577] 0.7511510302158765 0.7581815622257894
## [2579] 0.7656341403394616 0.7710572596069472
## [2581] 0.7804197130065130 0.7899063259338654
## [2583] 0.7908590206609583 0.8015072018533350
## [2585] 0.8075881063761102 0.8130293164086660
## [2587] 0.8253696030963937 0.8284163098725372
## [2589] 0.8359668070077944 0.8434472146225291
## [2591] 0.8552780603726226 0.8562588048577028
## [2593] 0.8702168760780750 0.8769980710064065
## [2595] 0.8826574094911446 0.8923592567613793
## [2597] 0.9019023642790793 0.9052738459194060
## [2599] 0.9163863676592875 0.9183354142667504
## [2601] 0.9281122679491540 0.9394390507901467
## [2603] 0.9446797369529798 0.9566881729372262
## [2605] 0.9637699953283403 0.9693191709020114
## [2607] 0.9806767580209838 0.9882020365855957
## [2609] 1.0011188694813764 1.0071298461826386
## [2611] 1.0142161021340805 1.0263651880766171
## [2613] 1.0370583668711324 1.0417667643745787
## [2615] 1.0494435665373236 1.0661270748605269
## [2617] 1.0708932350268972 1.0802152954453490
## [2619] 1.0883188151465426 1.0974767261676721
## [2621] 1.1112048304777016 1.1203375731413572
## [2623] 1.1278453924721601 1.1441999643119856
## [2625] 1.1518283271857244 1.1602753615719832
## [2627] 1.1694454009402251 1.1769545080297226
## [2629] 1.1896347961197129 1.2004057747429036
## [2631] 1.2168878564841721 1.2189802778629169
## [2633] 1.2372874658902380 1.2496030261273414
## [2635] 1.2597050180170963 1.2719874827520052
## [2637] 1.2812979562337996 1.2860269632802650
## [2639] 1.2956292556977209 1.3069071722793848
## [2641] 1.3299287575237386 1.3317191205533294
## [2643] 1.3509617836173777 1.3635284712806166
## [2645] 1.3751831545344388 1.3801843093430723
## [2647] 1.3990642318661346 1.4094266587053876
## [2649] 1.4249235603191295 1.4369049362450386
## [2651] 1.4489871341687655 1.4646191111470515
## [2653] 1.4767129204922458 1.4857064277767360
## [2655] 1.4983772858402820 1.5112256798680590
## [2657] 1.5203588500777063 1.5328859790767533
## [2659] 1.5517402844689885 1.5694357234113496
## [2661] 1.5739790562561928 1.5954208674102039
## [2663] 1.6021631908305478 1.6280951531658372
## [2665] 1.6335843797168987 1.6476634308692963
## [2667] 1.6706245668019197 1.6809857188657233
## [2669] 1.6893898803259848 1.7088905987973879
## [2671] 1.7206834173991390 1.7340396006649152
## [2673] 1.7599904290624218 1.7779825443418116
## [2675] 1.7941990256886986 1.8038870954154986
## [2677] 1.8204479805011371 1.8430377037363466
## [2679] 1.8443505159694318 1.8633230879545695
## [2681] 1.8851131997472681 1.8950185851392809
## [2683] 1.9138173087027095 1.9432989486473384
## [2685] 1.9578162619646955 1.9690760346591341
## [2687] 1.9855633278480191 1.9980032564976513
## [2689] 2.0209154850518254 2.0466079325769528
## [2691] 2.0577554774236355 2.0756606699176379
## [2693] 2.1037787878253562 2.1116133106509158
## [2695] 2.1293088415417145 2.1602867918154409
## [2697] 2.1800513670713801 2.1891028174090246
## [2699] 2.2013473192199524 2.2331229616064645
## [2701] 2.2403815011399684 2.2606802738227256
## [2703] 2.2845555933573496 2.3049407482686912
## [2705] 2.3320832057029861 2.3585057731855237
## [2707] 2.3664730011422876 2.3956523956167470
## [2709] 2.4112975301011867 2.4266056800285671
## [2711] 2.4517462815332660 2.4754128589057416
## [2713] 2.4951113176986781 2.5117739017076439
## [2715] 2.5347878306537512 2.5737433405464714
## [2717] 2.5988766954361191 2.6029689222541230
## [2719] 2.6428240775000411 2.6498844063538818
## [2721] 2.6804719330766451 2.7040298941903322
## [2723] 2.7421666120321353 2.7457939183615681
## [2725] 2.7875485222823913 2.8094232413676812
## [2727] 2.8270967031132170 2.8628982653590533
## [2729] 2.8720804902807018 2.8984434381571411
## [2731] 2.9296924271094396 2.9601996377237687
## [2733] 2.9820217370450450 3.0013998701964781
## [2735] 3.0287618454766201 3.0743884010157396
## [2737] 3.0803587219003954 3.1063502756571668
## [2739] 3.1314985379433606 3.1793664398587382
## [2741] 3.1902164852816428 3.2231328682226978
## [2743] 3.2657729722708226 3.2737115611022669
## [2745] 3.3060759972855784 3.3533787802839718
## [2747] 3.3680105792961013 3.4073555467241672
## [2749] 3.4227581905008231 3.4675181467925675
## [2751] 3.4807077696550737 3.5118248454943379
## [2753] 3.5531662171547032 3.5963784814729873
## [2755] 3.6240265316399856 3.6678419003358038
## [2757] 3.6992394636384138 3.7349623339753433
## [2759] 3.7436076657792494 3.7824684258089611
## [2761] 3.8229143125202527 3.8422807928116032
## [2763] 3.8900232608438672 3.9060473358628025
## [2765] 3.9397430282619617 4.0007905886633894
## [2767] 4.0090899280438315 4.0733601431411364
## [2769] 4.1036220289969165 4.1307896353431142
## [2771] 4.1595500950097826 4.2188674431135871
## [2773] 4.2449696241830690 4.2975418944516042
## [2775] 4.3238182689577744 4.3574583975259982
## [2777] 4.4160377896259941 4.4324664157811444
## [2779] 4.4627834132308255 4.5037705460400375
## [2781] 4.5508885977749811 4.5999948615370014
## [2783] 4.6491338842749776 4.6621822636414443
## [2785] 4.7022132805404082 4.7590479448484455
## [2787] 4.7890488720812128 4.8391922655146988
## [2789] 4.8776967062492629 4.9218217326984872
## [2791] 4.9747291239542495 5.0110684126789788
## [2793] 5.0532276981515896 5.1182247741068938
## [2795] 5.1488435110634256 5.2027742224189808
## [2797] 5.2288020136549695 5.3041427019516174
## [2799] 5.3365266401688638 5.4059093340238427
## [2801] 5.4149907192588858 5.4725352289040377
## [2803] 5.5271979182430773 5.5674773455971085
## [2805] 5.6556995917064361 5.7028082244640110
## [2807] 5.7385126141206655 5.8067806389264822
## [2809] 5.8238603240373061 5.8907602061530273
## [2811] 5.9589011619030812 6.0019757297998533
## [2813] 6.0331412452243738 6.1092993853279012
## [2815] 6.1634177570418132 6.2111257701517077
## [2817] 6.2382436440110816 6.3067681195553797
## [2819] 6.3552549853433549 6.4240843731764334
## [2821] 6.4675637857135042 6.5172013551693970
## [2823] 6.5719370811608000 6.6634246592691353
## [2825] 6.7205580244268708 6.7892794799944163
## [2827] 6.8646438565926076 6.8842943367695728
## [2829] 6.9818563015614501 7.0489599865182004
## [2831] 7.0539918849277674 7.1705599179486388
## [2833] 7.1963833789669431 7.2915893166912698
## [2835] 7.3507262200422074 7.4183330540833321
## [2837] 7.4902252950176953 7.5165635881353481
## [2839] 7.6344174193531602 7.6755240826396722
## [2841] 7.7499411789842485 7.8041345721377526
## [2843] 7.8703806217762029 7.9566416177782422
## [2845] 8.0456966105480578 8.1155389521697661
## [2847] 8.1519176130359607 8.2549109812774137
## [2849] 8.3184003225434981 8.3695595822442641
## [2851] 8.4242319506045131 8.5280348785790512
## [2853] 8.5719676311933526 8.6512828019332009
## [2855] 8.7577956962119305 8.8065362592308087
## [2857] 8.8953598177580062 8.9619580611348955
## [2859] 9.0330895132713191 9.1103537999096389
## [2861] 9.2655109810967691 9.2972012235690773
## [2863] 9.3820561380552387 9.5191477949580374
## [2865] 9.6034488587716087 9.6136730441173661
## [2867] 9.7644067359366566 9.8193278079559239
## [2869] 9.9497589998237768 10.0311896225343293
## [2871] 10.0738810100516307 10.1905339049440702
## [2873] 10.2303318430937686 10.3958961032064963
## [2875] 10.4732340564492059 10.5710561104955065
## [2877] 10.6086811410369197 10.6810073702084516
## [2879] 10.8128065825829562 10.9387401910851718
## [2881] 10.9752623592079797 11.0704806782194858
## [2883] 11.2060946021775010 11.3500331469983262
## [2885] 11.4472218337558775 11.5291541740821621
## [2887] 11.6011976069803762 11.6897283432749202
## [2889] 11.7784101240775936 11.9182887121995300
## [2891] 12.0750622871647924 12.1724461331700020
## [2893] 12.2378678898857132 12.4051517434843888
## [2895] 12.4263809602576529 12.5289531848165847
## [2897] 12.6732209698326734 12.8294667555530140
## [2899] 12.8772069581729998 13.0762157600403164
## [2901] 13.1227345897192222 13.2030534412747631
## [2903] 13.3807791673368932 13.4809643547975142
## [2905] 13.5580503725841819 13.7622485277600486
## [2907] 13.8771840923015350 13.9429651009978226
## [2909] 14.0414358453505557 14.2030216928741737
## [2911] 14.3650296997600151 14.5113415068762119
## [2913] 14.6209928075250080 14.7804644317429883
## [2915] 14.8546826191918839 14.9653211931326684
## [2917] 15.1194492451347831 15.2267924140128663
## [2919] 15.3949183442438216 15.5416382340973165
## [2921] 15.6796226968860761 15.7990704682291625
## [2923] 15.9214720949021906 16.0850758988399853
## [2925] 16.1899051146657840 16.3615432062145416
## [2927] 16.5249228112320878 16.6336731197715544
## [2929] 16.8597978488546438 16.9041221708510143
## [2931] 17.0910679817425120 17.2179432524441225
## [2933] 17.4697904248386315 17.6191325077217655
## [2935] 17.7989174519669824 17.9131267798099252
## [2937] 18.0478683769447521 18.2585233544695278
## [2939] 18.3414974759492644 18.4904773025392828
## [2941] 18.7621796541871504 18.8190250098936112
## [2943] 19.0532611914407290 19.1251232858365405
## [2945] 19.4053211882803680 19.5195653877606325
## [2947] 19.6832417463560176 19.8233305641345190
## [2949] 19.9999766591055206 20.2079409729862149
## [2951] 20.4364778191898928 20.6821088193978824
## [2953] 20.8433060441674129 20.8990935997531544
## [2955] 21.0856359979458432 21.3518854984802218
## [2957] 21.5348028521546624 21.6355171849878722
## [2959] 21.9570736524493917 22.1086118065347357
## [2961] 22.2819598799602581 22.6067961527118619
## [2963] 22.7752900222008385 22.9081012495018861
## [2965] 23.1540047288970676 23.4101202112752702
## [2967] 23.4799602207342737 23.7118263418966535
## [2969] 24.0298599286751475 24.1923934856620804
## [2971] 24.4797757451091584 24.5456887316662815
## [2973] 24.9149678836123911 25.0791546166123602
## [2975] 25.1693778006415378 25.5846454593931441
## [2977] 25.7749767355474546 26.0231525862126318
## [2979] 26.1418622300966383 26.4839180677619659
## [2981] 26.5064882682569660 26.8213364437713082
## [2983] 26.9823458719054834 27.3344758075558154
## [2985] 27.5821422909795224 27.8395004744332937
## [2987] 28.0425444688960219 28.3232124433139774
## [2989] 28.4513070611285706 28.8136874024939367
## [2991] 29.1480515336351260 29.3493028708489767
## [2993] 29.6971036094533929 29.8814568053896181
## [2995] 30.1692257146326988 30.3232358656978924
## [2997] 30.5716047345665345 30.9734764995187568
## [2999] 31.3257702166249139 31.4091533457374190
sort(unique(xgboost_grid$sample_size))
## [1] 0.1001774 0.1005786 0.1006769 0.1011920 0.1014580
## [6] 0.1017791 0.1019064 0.1021682 0.1024619 0.1028093
## [11] 0.1032371 0.1035192 0.1038420 0.1041415 0.1043948
## [16] 0.1047969 0.1049283 0.1051930 0.1054611 0.1057677
## [21] 0.1060959 0.1064986 0.1067595 0.1070875 0.1074954
## [26] 0.1076536 0.1080553 0.1082786 0.1084246 0.1087569
## [31] 0.1090235 0.1094758 0.1098976 0.1100328 0.1102702
## [36] 0.1107820 0.1108498 0.1111698 0.1114990 0.1119006
## [41] 0.1120900 0.1123293 0.1128295 0.1130164 0.1132349
## [46] 0.1137486 0.1139024 0.1141789 0.1146361 0.1147761
## [51] 0.1150996 0.1155788 0.1158108 0.1160910 0.1163020
## [56] 0.1165465 0.1168288 0.1173607 0.1175049 0.1179713
## [61] 0.1182699 0.1184008 0.1187184 0.1190949 0.1193670
## [66] 0.1195214 0.1198835 0.1202052 0.1204129 0.1209801
## [71] 0.1210427 0.1214198 0.1218404 0.1219535 0.1223145
## [76] 0.1226596 0.1229530 0.1232745 0.1234660 0.1238814
## [81] 0.1242216 0.1245938 0.1246814 0.1249375 0.1254011
## [86] 0.1255375 0.1259010 0.1263229 0.1266130 0.1267791
## [91] 0.1271683 0.1274540 0.1276831 0.1281301 0.1282354
## [96] 0.1287107 0.1288569 0.1291205 0.1296237 0.1299189
## [101] 0.1302199 0.1304148 0.1307017 0.1310530 0.1312897
## [106] 0.1316906 0.1319482 0.1321383 0.1324047 0.1328222
## [111] 0.1331584 0.1334025 0.1337498 0.1339743 0.1342758
## [116] 0.1347663 0.1350382 0.1352505 0.1356104 0.1358432
## [121] 0.1362529 0.1365841 0.1366708 0.1370964 0.1372539
## [126] 0.1375316 0.1380556 0.1383051 0.1386949 0.1387294
## [131] 0.1391498 0.1395571 0.1398366 0.1401653 0.1402866
## [136] 0.1406251 0.1409331 0.1411210 0.1415752 0.1417006
## [141] 0.1422741 0.1423217 0.1428093 0.1431105 0.1434087
## [146] 0.1436370 0.1438550 0.1441524 0.1445604 0.1447640
## [151] 0.1451823 0.1455040 0.1456423 0.1460474 0.1463217
## [156] 0.1465059 0.1468042 0.1473555 0.1474061 0.1478015
## [161] 0.1480372 0.1484208 0.1488600 0.1489409 0.1493195
## [166] 0.1496633 0.1498503 0.1502803 0.1504882 0.1508269
## [171] 0.1510745 0.1513216 0.1516196 0.1520226 0.1523316
## [176] 0.1527554 0.1529981 0.1533038 0.1536311 0.1539047
## [181] 0.1542330 0.1545102 0.1547799 0.1550567 0.1554248
## [186] 0.1555787 0.1558185 0.1562340 0.1566624 0.1569270
## [191] 0.1571084 0.1574931 0.1577819 0.1579817 0.1582616
## [196] 0.1587290 0.1588823 0.1592391 0.1594278 0.1598715
## [201] 0.1600463 0.1604965 0.1607763 0.1610704 0.1614103
## [206] 0.1616145 0.1618245 0.1623496 0.1625127 0.1627253
## [211] 0.1630945 0.1635454 0.1637934 0.1640385 0.1643397
## [216] 0.1647988 0.1650975 0.1653505 0.1656567 0.1659849
## [221] 0.1662235 0.1665448 0.1666089 0.1670418 0.1672931
## [226] 0.1675633 0.1680310 0.1681301 0.1685476 0.1689779
## [231] 0.1692110 0.1695370 0.1696540 0.1701228 0.1704507
## [236] 0.1706080 0.1710176 0.1713820 0.1716177 0.1717315
## [241] 0.1722688 0.1723605 0.1726904 0.1730335 0.1732323
## [246] 0.1737983 0.1738845 0.1741162 0.1746135 0.1747538
## [251] 0.1752353 0.1753403 0.1757646 0.1759104 0.1762691
## [256] 0.1766103 0.1768462 0.1772623 0.1776959 0.1777960
## [261] 0.1782804 0.1785329 0.1788590 0.1789905 0.1794204
## [266] 0.1796947 0.1798307 0.1803726 0.1804092 0.1809538
## [271] 0.1812876 0.1813699 0.1817595 0.1820530 0.1824852
## [276] 0.1825254 0.1828247 0.1832336 0.1834021 0.1839667
## [281] 0.1840892 0.1844470 0.1846272 0.1849984 0.1852864
## [286] 0.1855036 0.1858511 0.1861899 0.1866347 0.1867814
## [291] 0.1870530 0.1874071 0.1877992 0.1880000 0.1884075
## [296] 0.1885201 0.1890377 0.1892553 0.1895528 0.1898267
## [301] 0.1901636 0.1903094 0.1907305 0.1909746 0.1912368
## [306] 0.1915525 0.1920062 0.1921462 0.1924355 0.1928757
## [311] 0.1932451 0.1935775 0.1936542 0.1939413 0.1943245
## [316] 0.1945339 0.1949604 0.1951223 0.1955939 0.1959886
## [321] 0.1962543 0.1965456 0.1966862 0.1971435 0.1974805
## [326] 0.1975983 0.1979499 0.1983640 0.1984111 0.1989565
## [331] 0.1991459 0.1994075 0.1997069 0.1999741 0.2004498
## [336] 0.2006193 0.2009963 0.2011585 0.2014088 0.2019487
## [341] 0.2022598 0.2024529 0.2027338 0.2030218 0.2032166
## [346] 0.2035561 0.2039963 0.2041769 0.2044489 0.2049385
## [351] 0.2052975 0.2055851 0.2058234 0.2060830 0.2063871
## [356] 0.2065228 0.2068761 0.2071747 0.2076350 0.2077226
## [361] 0.2082925 0.2084707 0.2086018 0.2089504 0.2092802
## [366] 0.2097759 0.2098089 0.2101872 0.2105302 0.2109172
## [371] 0.2112820 0.2114658 0.2118903 0.2120745 0.2122140
## [376] 0.2125179 0.2128062 0.2133070 0.2134571 0.2137277
## [381] 0.2142263 0.2145927 0.2147708 0.2150072 0.2152699
## [386] 0.2155248 0.2159528 0.2161500 0.2166559 0.2168117
## [391] 0.2171701 0.2174244 0.2176153 0.2179504 0.2184300
## [396] 0.2185096 0.2188961 0.2192009 0.2195967 0.2197565
## [401] 0.2202299 0.2203399 0.2208130 0.2210392 0.2213335
## [406] 0.2215475 0.2218547 0.2221719 0.2224387 0.2228852
## [411] 0.2232030 0.2235393 0.2238707 0.2239322 0.2243531
## [416] 0.2246042 0.2248119 0.2252128 0.2255175 0.2257655
## [421] 0.2261008 0.2265939 0.2268449 0.2270066 0.2274079
## [426] 0.2275766 0.2278639 0.2283668 0.2285418 0.2289447
## [431] 0.2292050 0.2294846 0.2298793 0.2300667 0.2303520
## [436] 0.2305344 0.2308557 0.2312876 0.2315441 0.2319916
## [441] 0.2322055 0.2324399 0.2326361 0.2329442 0.2332069
## [446] 0.2337619 0.2340073 0.2341072 0.2345603 0.2349554
## [451] 0.2350205 0.2353739 0.2358848 0.2361139 0.2362295
## [456] 0.2366177 0.2370696 0.2373618 0.2374191 0.2378112
## [461] 0.2380740 0.2385324 0.2388557 0.2391100 0.2393094
## [466] 0.2395621 0.2399733 0.2403113 0.2405127 0.2408815
## [471] 0.2412086 0.2413181 0.2418945 0.2421166 0.2422027
## [476] 0.2426075 0.2428453 0.2432678 0.2435727 0.2438894
## [481] 0.2441267 0.2445869 0.2448039 0.2450265 0.2452642
## [486] 0.2455129 0.2460274 0.2463862 0.2466940 0.2468620
## [491] 0.2472236 0.2473734 0.2477606 0.2479993 0.2484562
## [496] 0.2485889 0.2489390 0.2492289 0.2495704 0.2498354
## [501] 0.2500136 0.2503376 0.2506093 0.2510168 0.2514578
## [506] 0.2517234 0.2518330 0.2522255 0.2526607 0.2528006
## [511] 0.2530884 0.2533711 0.2537688 0.2540348 0.2542955
## [516] 0.2545673 0.2548387 0.2553021 0.2555244 0.2559280
## [521] 0.2561893 0.2564196 0.2566519 0.2569780 0.2573838
## [526] 0.2575707 0.2578366 0.2583815 0.2585758 0.2589008
## [531] 0.2592617 0.2593285 0.2597657 0.2600029 0.2604608
## [536] 0.2606948 0.2609390 0.2613864 0.2616008 0.2617888
## [541] 0.2622661 0.2623296 0.2627102 0.2629447 0.2633246
## [546] 0.2637555 0.2640484 0.2641741 0.2646559 0.2647599
## [551] 0.2651839 0.2653052 0.2656813 0.2659626 0.2662092
## [556] 0.2667888 0.2669935 0.2671886 0.2675109 0.2679760
## [561] 0.2680358 0.2683501 0.2687638 0.2691975 0.2692859
## [566] 0.2695585 0.2699006 0.2703292 0.2705955 0.2707135
## [571] 0.2710055 0.2713239 0.2716561 0.2719619 0.2724329
## [576] 0.2726969 0.2728113 0.2732437 0.2734982 0.2737362
## [581] 0.2741189 0.2744594 0.2746427 0.2750910 0.2753128
## [586] 0.2755706 0.2760754 0.2762342 0.2765195 0.2768650
## [591] 0.2770496 0.2774796 0.2777678 0.2779129 0.2783095
## [596] 0.2785703 0.2790735 0.2791926 0.2796903 0.2799090
## [601] 0.2800494 0.2805204 0.2806270 0.2810323 0.2813400
## [606] 0.2816045 0.2820964 0.2821092 0.2824757 0.2827488
## [611] 0.2832867 0.2835671 0.2836797 0.2840459 0.2844017
## [616] 0.2845560 0.2850574 0.2853292 0.2856774 0.2858612
## [621] 0.2861494 0.2865586 0.2866187 0.2869258 0.2874156
## [626] 0.2876418 0.2878890 0.2883011 0.2886738 0.2888656
## [631] 0.2892467 0.2894734 0.2896561 0.2899231 0.2902290
## [636] 0.2905398 0.2910000 0.2913282 0.2915563 0.2919269
## [641] 0.2921017 0.2925836 0.2927548 0.2930303 0.2933204
## [646] 0.2936702 0.2940489 0.2943645 0.2946837 0.2947213
## [651] 0.2950399 0.2953274 0.2956366 0.2961438 0.2962465
## [656] 0.2966563 0.2968312 0.2973502 0.2975342 0.2979428
## [661] 0.2980875 0.2984168 0.2988937 0.2991832 0.2992941
## [666] 0.2996270 0.3000813 0.3003062 0.3006530 0.3008956
## [671] 0.3011179 0.3013410 0.3018177 0.3019076 0.3024691
## [676] 0.3027780 0.3029090 0.3032106 0.3035667 0.3039512
## [681] 0.3041930 0.3043835 0.3047051 0.3049583 0.3052749
## [686] 0.3057973 0.3060235 0.3062758 0.3064529 0.3069665
## [691] 0.3070853 0.3074587 0.3076837 0.3079625 0.3082648
## [696] 0.3087702 0.3088860 0.3091957 0.3096806 0.3097664
## [701] 0.3102422 0.3105379 0.3107564 0.3110910 0.3114417
## [706] 0.3117971 0.3118855 0.3121060 0.3124554 0.3128174
## [711] 0.3131287 0.3134859 0.3137853 0.3139941 0.3142081
## [716] 0.3146679 0.3149675 0.3151783 0.3155718 0.3157563
## [721] 0.3160648 0.3165210 0.3166624 0.3171820 0.3174919
## [726] 0.3175736 0.3178685 0.3183505 0.3186430 0.3187390
## [731] 0.3190650 0.3193965 0.3197541 0.3200237 0.3202281
## [736] 0.3207231 0.3210677 0.3213528 0.3215222 0.3217956
## [741] 0.3222132 0.3224506 0.3227953 0.3231873 0.3234496
## [746] 0.3237665 0.3238776 0.3242983 0.3244742 0.3248348
## [751] 0.3250727 0.3253656 0.3257195 0.3261854 0.3262076
## [756] 0.3266232 0.3270986 0.3273685 0.3274558 0.3278333
## [761] 0.3280157 0.3284697 0.3288672 0.3289679 0.3292328
## [766] 0.3296935 0.3299181 0.3301997 0.3306898 0.3308179
## [771] 0.3310199 0.3314291 0.3316753 0.3320673 0.3323829
## [776] 0.3325561 0.3329755 0.3331761 0.3335889 0.3338551
## [781] 0.3342434 0.3344575 0.3346746 0.3349181 0.3352373
## [786] 0.3357116 0.3359233 0.3362352 0.3366390 0.3367752
## [791] 0.3372541 0.3373512 0.3376309 0.3379074 0.3384709
## [796] 0.3386867 0.3390601 0.3393214 0.3396875 0.3399318
## [801] 0.3402276 0.3404536 0.3408839 0.3411591 0.3412745
## [806] 0.3417536 0.3418126 0.3422288 0.3424419 0.3429686
## [811] 0.3430757 0.3433215 0.3436983 0.3439444 0.3443923
## [816] 0.3446605 0.3448898 0.3451080 0.3454816 0.3457377
## [821] 0.3461739 0.3463009 0.3468077 0.3469387 0.3472794
## [826] 0.3477838 0.3479643 0.3481437 0.3486077 0.3488932
## [831] 0.3490719 0.3493246 0.3496256 0.3499549 0.3503539
## [836] 0.3506385 0.3510140 0.3513591 0.3514190 0.3517167
## [841] 0.3522217 0.3524242 0.3528248 0.3529274 0.3533716
## [846] 0.3536798 0.3540234 0.3543658 0.3544463 0.3548929
## [851] 0.3552887 0.3555285 0.3557534 0.3561058 0.3563253
## [856] 0.3566991 0.3570252 0.3572520 0.3576482 0.3579751
## [861] 0.3581086 0.3584262 0.3588693 0.3591636 0.3594827
## [866] 0.3596245 0.3598977 0.3603390 0.3606633 0.3608133
## [871] 0.3611647 0.3613093 0.3616070 0.3621729 0.3623878
## [876] 0.3627435 0.3630890 0.3631832 0.3635314 0.3638629
## [881] 0.3641245 0.3644492 0.3646297 0.3650444 0.3653604
## [886] 0.3657349 0.3659414 0.3663270 0.3664949 0.3667412
## [891] 0.3671453 0.3674605 0.3677826 0.3681864 0.3683399
## [896] 0.3687417 0.3688623 0.3693296 0.3695601 0.3698276
## [901] 0.3700279 0.3703141 0.3708061 0.3710005 0.3714258
## [906] 0.3716804 0.3718075 0.3722456 0.3725941 0.3729870
## [911] 0.3730290 0.3733282 0.3737126 0.3739522 0.3743713
## [916] 0.3746059 0.3748491 0.3753628 0.3756114 0.3759262
## [921] 0.3760170 0.3763817 0.3766405 0.3770144 0.3773679
## [926] 0.3775973 0.3780822 0.3783822 0.3786657 0.3787526
## [931] 0.3792472 0.3795556 0.3797373 0.3799188 0.3803951
## [936] 0.3805386 0.3809741 0.3812945 0.3814201 0.3819750
## [941] 0.3822729 0.3825477 0.3826102 0.3829613 0.3833084
## [946] 0.3836553 0.3840006 0.3841775 0.3845924 0.3849113
## [951] 0.3851139 0.3854655 0.3857874 0.3861161 0.3862668
## [956] 0.3865187 0.3870673 0.3871087 0.3876194 0.3877188
## [961] 0.3881738 0.3884068 0.3886947 0.3890291 0.3892200
## [966] 0.3897343 0.3900215 0.3903672 0.3906998 0.3909363
## [971] 0.3912932 0.3914104 0.3918348 0.3920495 0.3924548
## [976] 0.3927345 0.3928753 0.3932766 0.3936349 0.3939449
## [981] 0.3942557 0.3944953 0.3948770 0.3950890 0.3953137
## [986] 0.3956273 0.3960228 0.3963666 0.3966682 0.3968182
## [991] 0.3970700 0.3973427 0.3978519 0.3980358 0.3984965
## [996] 0.3986793 0.3989423 0.3993364 0.3996216 0.3997314
## [1001] 0.4002105 0.4003719 0.4008740 0.4010234 0.4014102
## [1006] 0.4016980 0.4018804 0.4022612 0.4025326 0.4029426
## [1011] 0.4031826 0.4034861 0.4038617 0.4039231 0.4043182
## [1016] 0.4047087 0.4049946 0.4052534 0.4054980 0.4057950
## [1021] 0.4062193 0.4063713 0.4068656 0.4071981 0.4073398
## [1026] 0.4075576 0.4080569 0.4082053 0.4086902 0.4088959
## [1031] 0.4092838 0.4093155 0.4098897 0.4101122 0.4103249
## [1036] 0.4106959 0.4108911 0.4113829 0.4114521 0.4119699
## [1041] 0.4120083 0.4124739 0.4128712 0.4131318 0.4133380
## [1046] 0.4136622 0.4138890 0.4143461 0.4145373 0.4147717
## [1051] 0.4150694 0.4155198 0.4156206 0.4160908 0.4162701
## [1056] 0.4165080 0.4170210 0.4173133 0.4174644 0.4178164
## [1061] 0.4180456 0.4184093 0.4188451 0.4191733 0.4194662
## [1066] 0.4197774 0.4200482 0.4201860 0.4204156 0.4209466
## [1071] 0.4211472 0.4215739 0.4218264 0.4221370 0.4224980
## [1076] 0.4226696 0.4230607 0.4232232 0.4235848 0.4239642
## [1081] 0.4241194 0.4243807 0.4246979 0.4249012 0.4252280
## [1086] 0.4255521 0.4258895 0.4263537 0.4265833 0.4267444
## [1091] 0.4271090 0.4274394 0.4278454 0.4281306 0.4284634
## [1096] 0.4287609 0.4288745 0.4291787 0.4295858 0.4299151
## [1101] 0.4301662 0.4303858 0.4308564 0.4310323 0.4314814
## [1106] 0.4316553 0.4318270 0.4323101 0.4324366 0.4327620
## [1111] 0.4330395 0.4333054 0.4337035 0.4340723 0.4343726
## [1116] 0.4347056 0.4348443 0.4352423 0.4355906 0.4358748
## [1121] 0.4362771 0.4365273 0.4368099 0.4371750 0.4372745
## [1126] 0.4376572 0.4378775 0.4383832 0.4384025 0.4387947
## [1131] 0.4391967 0.4395929 0.4397949 0.4400828 0.4402444
## [1136] 0.4407645 0.4409564 0.4411653 0.4416089 0.4417108
## [1141] 0.4422488 0.4425943 0.4428227 0.4431778 0.4434733
## [1146] 0.4437894 0.4440125 0.4442003 0.4445780 0.4447561
## [1151] 0.4451996 0.4454929 0.4457103 0.4460267 0.4464132
## [1156] 0.4467990 0.4468128 0.4472229 0.4475997 0.4478032
## [1161] 0.4482445 0.4484672 0.4486408 0.4490741 0.4494653
## [1166] 0.4496332 0.4498976 0.4503096 0.4504347 0.4508406
## [1171] 0.4510019 0.4514566 0.4516978 0.4520105 0.4524195
## [1176] 0.4527729 0.4529612 0.4532002 0.4536176 0.4538891
## [1181] 0.4541143 0.4543855 0.4546763 0.4551275 0.4554070
## [1186] 0.4555046 0.4559795 0.4563883 0.4564258 0.4567136
## [1191] 0.4570775 0.4573866 0.4577696 0.4579916 0.4584533
## [1196] 0.4585764 0.4588350 0.4593058 0.4594799 0.4599528
## [1201] 0.4601904 0.4604437 0.4608648 0.4610069 0.4612323
## [1206] 0.4616003 0.4619585 0.4621660 0.4625508 0.4629108
## [1211] 0.4632251 0.4635700 0.4636670 0.4640205 0.4644588
## [1216] 0.4645096 0.4648304 0.4652908 0.4654383 0.4659056
## [1221] 0.4661149 0.4665814 0.4666659 0.4670687 0.4673703
## [1226] 0.4675339 0.4680367 0.4683932 0.4685680 0.4687311
## [1231] 0.4691541 0.4694557 0.4697298 0.4701722 0.4703926
## [1236] 0.4706065 0.4708132 0.4711882 0.4714679 0.4717138
## [1241] 0.4721338 0.4723269 0.4727231 0.4729946 0.4734216
## [1246] 0.4735268 0.4738596 0.4742305 0.4744072 0.4747918
## [1251] 0.4752007 0.4753315 0.4757297 0.4760777 0.4762871
## [1256] 0.4765343 0.4768137 0.4773155 0.4775949 0.4777898
## [1261] 0.4780734 0.4784244 0.4786186 0.4790468 0.4794572
## [1266] 0.4795283 0.4799487 0.4802847 0.4805426 0.4808662
## [1271] 0.4810334 0.4815167 0.4816221 0.4819037 0.4823859
## [1276] 0.4826685 0.4828363 0.4833235 0.4834902 0.4837857
## [1281] 0.4841188 0.4844794 0.4847737 0.4849939 0.4853573
## [1286] 0.4855390 0.4860281 0.4861055 0.4865935 0.4867102
## [1291] 0.4870476 0.4875867 0.4877660 0.4880097 0.4884091
## [1296] 0.4885226 0.4890197 0.4892048 0.4896977 0.4897379
## [1301] 0.4901167 0.4905684 0.4908533 0.4911481 0.4913495
## [1306] 0.4915036 0.4918316 0.4922460 0.4924161 0.4928296
## [1311] 0.4930308 0.4934022 0.4938876 0.4941616 0.4944444
## [1316] 0.4947870 0.4948579 0.4951355 0.4955661 0.4959049
## [1321] 0.4960832 0.4965188 0.4966205 0.4970235 0.4972803
## [1326] 0.4976031 0.4980111 0.4981636 0.4985564 0.4988847
## [1331] 0.4992105 0.4995105 0.4996176 0.4999983 0.5004647
## [1336] 0.5006430 0.5008988 0.5013961 0.5014381 0.5019918
## [1341] 0.5022556 0.5025358 0.5028236 0.5029201 0.5032667
## [1346] 0.5037411 0.5039999 0.5041965 0.5044650 0.5049268
## [1351] 0.5052166 0.5055926 0.5057480 0.5060209 0.5064731
## [1356] 0.5066872 0.5068485 0.5072846 0.5076943 0.5078546
## [1361] 0.5081294 0.5084705 0.5086151 0.5089363 0.5094886
## [1366] 0.5096674 0.5099046 0.5103215 0.5106248 0.5108286
## [1371] 0.5110814 0.5115152 0.5117065 0.5120504 0.5123182
## [1376] 0.5127026 0.5130230 0.5133841 0.5136886 0.5138462
## [1381] 0.5142880 0.5144487 0.5146276 0.5150519 0.5152736
## [1386] 0.5156429 0.5159293 0.5163496 0.5166692 0.5167963
## [1391] 0.5170183 0.5175337 0.5178835 0.5180000 0.5183535
## [1396] 0.5185936 0.5190961 0.5191508 0.5194837 0.5199125
## [1401] 0.5202728 0.5203602 0.5208582 0.5210740 0.5212200
## [1406] 0.5215432 0.5218309 0.5221432 0.5225793 0.5229535
## [1411] 0.5230790 0.5233700 0.5236947 0.5241217 0.5244828
## [1416] 0.5245698 0.5250147 0.5251894 0.5255472 0.5259684
## [1421] 0.5260022 0.5264897 0.5267276 0.5269624 0.5273581
## [1426] 0.5277291 0.5278418 0.5282233 0.5285360 0.5289692
## [1431] 0.5292664 0.5295127 0.5298697 0.5300822 0.5303912
## [1436] 0.5307472 0.5308430 0.5312745 0.5316861 0.5317576
## [1441] 0.5320371 0.5324945 0.5327630 0.5331056 0.5332995
## [1446] 0.5336288 0.5340493 0.5341684 0.5345832 0.5347943
## [1451] 0.5351547 0.5353575 0.5357293 0.5361656 0.5364087
## [1456] 0.5365828 0.5369737 0.5372494 0.5374858 0.5377086
## [1461] 0.5380179 0.5383101 0.5387126 0.5391532 0.5392147
## [1466] 0.5395663 0.5398307 0.5403328 0.5405935 0.5409953
## [1471] 0.5411421 0.5415194 0.5416284 0.5419223 0.5422042
## [1476] 0.5426231 0.5430030 0.5433801 0.5434546 0.5438842
## [1481] 0.5442959 0.5445365 0.5448089 0.5451677 0.5454846
## [1486] 0.5457579 0.5459419 0.5462567 0.5464274 0.5469562
## [1491] 0.5471172 0.5475784 0.5477322 0.5479873 0.5483755
## [1496] 0.5485899 0.5488346 0.5491609 0.5494065 0.5499293
## [1501] 0.5501547 0.5503006 0.5507823 0.5510653 0.5514523
## [1506] 0.5516428 0.5520912 0.5521930 0.5524539 0.5528170
## [1511] 0.5530952 0.5533291 0.5538508 0.5541292 0.5542725
## [1516] 0.5545505 0.5548950 0.5551428 0.5554937 0.5557677
## [1521] 0.5560381 0.5565446 0.5568663 0.5571671 0.5574135
## [1526] 0.5577885 0.5580994 0.5581938 0.5584249 0.5588757
## [1531] 0.5591254 0.5595085 0.5597431 0.5599837 0.5603923
## [1536] 0.5605256 0.5609228 0.5613103 0.5614220 0.5619575
## [1541] 0.5622990 0.5624229 0.5626642 0.5629166 0.5633029
## [1546] 0.5637396 0.5639188 0.5643184 0.5644540 0.5647910
## [1551] 0.5652220 0.5654527 0.5656403 0.5659517 0.5662853
## [1556] 0.5666313 0.5670784 0.5671514 0.5675097 0.5677366
## [1561] 0.5681989 0.5684372 0.5688237 0.5689689 0.5694276
## [1566] 0.5697906 0.5698394 0.5701116 0.5706002 0.5709064
## [1571] 0.5712748 0.5715352 0.5717052 0.5721758 0.5724550
## [1576] 0.5725312 0.5728252 0.5731508 0.5735177 0.5737226
## [1581] 0.5740479 0.5743033 0.5748012 0.5750924 0.5753194
## [1586] 0.5755314 0.5759142 0.5761298 0.5766953 0.5767139
## [1591] 0.5772906 0.5774693 0.5778571 0.5781369 0.5783196
## [1596] 0.5786881 0.5789237 0.5792682 0.5794213 0.5797651
## [1601] 0.5802225 0.5805660 0.5807990 0.5809144 0.5812548
## [1606] 0.5816588 0.5820510 0.5823504 0.5824308 0.5827192
## [1611] 0.5832802 0.5834570 0.5836007 0.5841452 0.5844510
## [1616] 0.5847372 0.5849634 0.5852027 0.5856072 0.5858975
## [1621] 0.5860524 0.5865683 0.5866433 0.5871547 0.5873128
## [1626] 0.5877827 0.5878032 0.5882133 0.5886966 0.5889832
## [1631] 0.5891828 0.5894913 0.5898279 0.5901745 0.5904325
## [1636] 0.5907808 0.5910316 0.5913299 0.5914865 0.5919234
## [1641] 0.5921271 0.5924902 0.5927737 0.5929704 0.5932875
## [1646] 0.5937505 0.5940420 0.5942653 0.5945469 0.5948723
## [1651] 0.5950897 0.5954974 0.5956170 0.5961904 0.5963957
## [1656] 0.5965113 0.5970979 0.5973103 0.5974062 0.5978543
## [1661] 0.5981071 0.5985963 0.5988583 0.5990899 0.5994796
## [1666] 0.5996117 0.5999806 0.6003198 0.6005419 0.6009046
## [1671] 0.6011307 0.6014900 0.6016709 0.6019051 0.6022812
## [1676] 0.6025305 0.6028546 0.6032947 0.6035420 0.6037516
## [1681] 0.6040339 0.6044172 0.6047073 0.6051530 0.6053034
## [1686] 0.6057507 0.6059051 0.6061291 0.6066436 0.6067862
## [1691] 0.6071271 0.6074671 0.6077829 0.6079593 0.6084621
## [1696] 0.6087019 0.6089005 0.6093481 0.6095637 0.6098843
## [1701] 0.6101056 0.6105599 0.6106355 0.6109797 0.6112649
## [1706] 0.6117632 0.6120836 0.6122335 0.6125548 0.6127076
## [1711] 0.6132071 0.6134211 0.6137396 0.6140670 0.6142340
## [1716] 0.6146518 0.6148071 0.6152649 0.6155238 0.6158091
## [1721] 0.6161465 0.6163398 0.6168497 0.6170006 0.6173180
## [1726] 0.6175114 0.6179298 0.6183421 0.6185835 0.6187600
## [1731] 0.6191148 0.6193875 0.6196575 0.6200174 0.6203478
## [1736] 0.6205217 0.6210683 0.6212714 0.6214635 0.6217640
## [1741] 0.6222187 0.6225669 0.6227183 0.6230808 0.6232330
## [1746] 0.6237441 0.6238204 0.6242411 0.6245419 0.6248280
## [1751] 0.6252746 0.6255284 0.6258103 0.6259146 0.6263263
## [1756] 0.6267479 0.6270856 0.6273931 0.6275132 0.6277361
## [1761] 0.6280309 0.6284527 0.6288357 0.6291595 0.6293495
## [1766] 0.6297207 0.6298280 0.6302019 0.6305759 0.6307321
## [1771] 0.6310461 0.6313504 0.6317543 0.6320882 0.6322523
## [1776] 0.6325605 0.6330224 0.6333427 0.6335811 0.6338457
## [1781] 0.6341279 0.6343630 0.6346417 0.6350597 0.6354698
## [1786] 0.6357794 0.6358249 0.6361177 0.6365943 0.6368407
## [1791] 0.6370318 0.6373788 0.6378390 0.6381949 0.6384065
## [1796] 0.6386574 0.6390827 0.6391794 0.6396772 0.6399327
## [1801] 0.6402349 0.6404634 0.6408434 0.6410827 0.6412105
## [1806] 0.6417361 0.6419950 0.6421118 0.6424419 0.6427783
## [1811] 0.6431981 0.6435559 0.6436248 0.6439953 0.6444572
## [1816] 0.6447797 0.6450303 0.6453581 0.6455898 0.6457304
## [1821] 0.6461746 0.6463012 0.6468589 0.6469985 0.6472738
## [1826] 0.6477411 0.6479157 0.6483789 0.6486253 0.6488640
## [1831] 0.6491384 0.6493614 0.6498588 0.6501251 0.6502359
## [1836] 0.6506323 0.6509927 0.6511346 0.6514967 0.6517853
## [1841] 0.6522919 0.6523743 0.6528901 0.6530562 0.6533221
## [1846] 0.6537701 0.6538075 0.6541102 0.6545631 0.6547386
## [1851] 0.6551696 0.6554163 0.6556739 0.6559229 0.6563670
## [1856] 0.6565370 0.6570048 0.6573110 0.6574363 0.6579452
## [1861] 0.6581469 0.6583938 0.6587036 0.6591499 0.6594441
## [1866] 0.6596019 0.6600097 0.6601219 0.6605149 0.6608404
## [1871] 0.6610845 0.6615526 0.6617852 0.6621326 0.6622899
## [1876] 0.6625835 0.6628854 0.6631446 0.6635223 0.6638778
## [1881] 0.6642379 0.6645511 0.6646868 0.6651904 0.6652806
## [1886] 0.6655500 0.6659778 0.6663129 0.6666522 0.6667013
## [1891] 0.6671630 0.6674929 0.6677732 0.6680811 0.6684528
## [1896] 0.6687831 0.6689864 0.6693943 0.6695928 0.6698289
## [1901] 0.6701271 0.6704413 0.6708678 0.6711131 0.6714533
## [1906] 0.6715846 0.6719995 0.6721212 0.6724436 0.6728499
## [1911] 0.6731343 0.6734128 0.6736805 0.6740077 0.6743803
## [1916] 0.6745223 0.6749229 0.6753686 0.6754696 0.6759543
## [1921] 0.6760695 0.6764610 0.6767028 0.6769230 0.6773489
## [1926] 0.6776283 0.6780301 0.6783147 0.6785708 0.6787558
## [1931] 0.6792891 0.6794160 0.6798478 0.6800745 0.6803988
## [1936] 0.6807031 0.6809155 0.6813499 0.6816812 0.6817959
## [1941] 0.6821519 0.6824942 0.6828339 0.6831801 0.6832081
## [1946] 0.6837066 0.6839131 0.6843179 0.6844719 0.6847851
## [1951] 0.6850568 0.6854027 0.6857827 0.6859673 0.6862003
## [1956] 0.6866282 0.6869643 0.6873252 0.6876621 0.6879545
## [1961] 0.6880960 0.6884949 0.6888840 0.6889653 0.6894746
## [1966] 0.6897039 0.6899379 0.6903986 0.6906839 0.6907850
## [1971] 0.6911906 0.6913712 0.6917080 0.6920158 0.6922132
## [1976] 0.6926247 0.6928996 0.6932023 0.6934887 0.6939588
## [1981] 0.6940067 0.6945615 0.6947671 0.6951556 0.6954727
## [1986] 0.6955879 0.6960679 0.6961854 0.6964799 0.6969476
## [1991] 0.6970711 0.6975218 0.6977212 0.6980560 0.6982665
## [1996] 0.6985700 0.6988979 0.6993847 0.6994189 0.6998981
## [2001] 0.7002732 0.7004377 0.7006420 0.7011069 0.7012924
## [2006] 0.7016526 0.7020013 0.7023935 0.7025219 0.7027688
## [2011] 0.7031453 0.7034440 0.7036095 0.7039332 0.7043675
## [2016] 0.7045604 0.7048493 0.7053475 0.7056434 0.7057763
## [2021] 0.7060432 0.7064367 0.7068593 0.7071495 0.7072485
## [2026] 0.7077687 0.7080659 0.7081350 0.7086922 0.7088424
## [2031] 0.7092816 0.7093711 0.7097185 0.7100177 0.7103111
## [2036] 0.7107301 0.7108174 0.7112180 0.7116408 0.7119677
## [2041] 0.7120159 0.7125628 0.7126224 0.7130240 0.7133551
## [2046] 0.7136390 0.7138297 0.7142830 0.7145176 0.7148758
## [2051] 0.7152680 0.7153410 0.7156865 0.7159477 0.7163736
## [2056] 0.7166177 0.7168384 0.7172804 0.7176110 0.7178038
## [2061] 0.7182948 0.7184033 0.7187628 0.7190936 0.7192829
## [2066] 0.7196770 0.7199502 0.7203420 0.7205610 0.7208949
## [2071] 0.7212165 0.7214387 0.7217114 0.7220133 0.7223122
## [2076] 0.7226638 0.7229787 0.7232595 0.7234878 0.7237389
## [2081] 0.7241091 0.7245201 0.7246534 0.7249349 0.7252164
## [2086] 0.7256953 0.7259286 0.7263118 0.7265186 0.7267205
## [2091] 0.7271611 0.7275008 0.7276515 0.7281434 0.7283409
## [2096] 0.7287700 0.7289613 0.7293744 0.7295358 0.7299062
## [2101] 0.7302269 0.7305539 0.7306581 0.7311445 0.7314588
## [2106] 0.7317880 0.7320423 0.7323175 0.7325427 0.7328462
## [2111] 0.7330532 0.7333792 0.7336643 0.7341685 0.7342517
## [2116] 0.7347955 0.7350443 0.7353488 0.7356119 0.7359122
## [2121] 0.7361981 0.7363646 0.7366353 0.7371297 0.7374999
## [2126] 0.7375891 0.7378456 0.7381212 0.7385760 0.7389025
## [2131] 0.7390727 0.7394544 0.7396987 0.7400095 0.7402690
## [2136] 0.7405667 0.7409748 0.7412079 0.7414216 0.7419629
## [2141] 0.7420949 0.7423589 0.7426536 0.7430204 0.7434357
## [2146] 0.7436857 0.7440801 0.7441818 0.7444295 0.7447930
## [2151] 0.7451468 0.7454032 0.7458407 0.7460009 0.7464291
## [2156] 0.7467913 0.7469650 0.7471275 0.7475225 0.7478829
## [2161] 0.7482292 0.7485408 0.7487705 0.7491641 0.7494065
## [2166] 0.7496438 0.7498056 0.7502474 0.7505052 0.7509599
## [2171] 0.7511025 0.7515837 0.7517351 0.7521005 0.7523883
## [2176] 0.7526074 0.7528651 0.7531782 0.7536009 0.7539073
## [2181] 0.7542791 0.7545730 0.7548308 0.7550500 0.7553557
## [2186] 0.7557837 0.7559268 0.7562159 0.7564722 0.7568423
## [2191] 0.7572949 0.7573604 0.7577491 0.7579228 0.7583601
## [2196] 0.7585335 0.7590653 0.7592974 0.7596437 0.7597671
## [2201] 0.7602605 0.7604960 0.7607688 0.7609898 0.7613665
## [2206] 0.7617328 0.7619087 0.7622223 0.7625301 0.7627630
## [2211] 0.7632305 0.7633597 0.7637818 0.7641406 0.7642564
## [2216] 0.7645895 0.7650512 0.7651071 0.7655392 0.7659324
## [2221] 0.7661930 0.7665606 0.7666033 0.7671182 0.7674918
## [2226] 0.7675785 0.7680377 0.7683817 0.7684164 0.7687814
## [2231] 0.7691239 0.7693098 0.7698573 0.7700402 0.7704311
## [2236] 0.7705543 0.7709632 0.7711015 0.7716242 0.7718073
## [2241] 0.7721040 0.7724214 0.7728040 0.7730633 0.7732172
## [2246] 0.7735712 0.7740126 0.7743598 0.7746141 0.7749099
## [2251] 0.7751780 0.7753069 0.7756703 0.7760696 0.7763969
## [2256] 0.7767210 0.7770442 0.7773139 0.7775452 0.7779758
## [2261] 0.7781154 0.7785288 0.7786478 0.7790474 0.7792786
## [2266] 0.7797923 0.7798239 0.7803447 0.7806481 0.7808672
## [2271] 0.7812266 0.7814925 0.7817229 0.7821295 0.7824158
## [2276] 0.7827025 0.7829912 0.7832520 0.7834483 0.7839836
## [2281] 0.7841794 0.7845174 0.7848812 0.7849867 0.7853827
## [2286] 0.7856136 0.7859860 0.7862919 0.7865498 0.7869475
## [2291] 0.7870115 0.7874355 0.7878504 0.7879830 0.7882230
## [2296] 0.7886860 0.7888066 0.7893500 0.7895390 0.7897885
## [2301] 0.7901810 0.7905004 0.7908091 0.7910453 0.7913220
## [2306] 0.7916008 0.7919979 0.7921461 0.7925365 0.7929858
## [2311] 0.7930445 0.7935703 0.7936405 0.7941158 0.7944499
## [2316] 0.7947219 0.7950560 0.7951195 0.7955717 0.7958975
## [2321] 0.7961654 0.7964230 0.7966434 0.7969008 0.7974155
## [2326] 0.7977295 0.7978868 0.7982507 0.7984976 0.7987591
## [2331] 0.7990184 0.7995269 0.7996997 0.7999057 0.8003623
## [2336] 0.8005840 0.8010250 0.8012745 0.8014591 0.8018004
## [2341] 0.8021140 0.8024162 0.8028704 0.8031882 0.8034655
## [2346] 0.8036614 0.8039220 0.8042676 0.8046779 0.8047599
## [2351] 0.8051750 0.8054536 0.8058347 0.8059815 0.8063492
## [2356] 0.8067954 0.8070967 0.8073196 0.8074837 0.8077151
## [2361] 0.8080752 0.8083197 0.8088401 0.8089128 0.8093769
## [2366] 0.8096627 0.8098036 0.8102321 0.8104318 0.8109919
## [2371] 0.8112207 0.8115464 0.8118437 0.8120296 0.8124210
## [2376] 0.8126528 0.8130104 0.8131301 0.8136618 0.8137332
## [2381] 0.8140552 0.8143369 0.8147929 0.8151294 0.8154422
## [2386] 0.8156255 0.8158050 0.8163290 0.8166050 0.8168218
## [2391] 0.8172966 0.8173946 0.8177427 0.8179583 0.8183294
## [2396] 0.8185442 0.8190839 0.8193632 0.8194933 0.8197733
## [2401] 0.8201818 0.8203166 0.8207489 0.8210598 0.8214301
## [2406] 0.8215511 0.8220458 0.8223354 0.8226252 0.8229116
## [2411] 0.8230525 0.8234985 0.8238262 0.8241169 0.8243426
## [2416] 0.8245789 0.8250551 0.8251734 0.8256754 0.8259016
## [2421] 0.8260871 0.8263291 0.8267583 0.8271471 0.8272208
## [2426] 0.8277608 0.8278075 0.8281405 0.8285617 0.8288581
## [2431] 0.8291705 0.8295620 0.8297498 0.8300809 0.8303217
## [2436] 0.8307397 0.8308755 0.8311853 0.8316584 0.8317376
## [2441] 0.8320250 0.8325108 0.8327420 0.8329592 0.8333340
## [2446] 0.8337613 0.8339400 0.8343694 0.8344420 0.8347596
## [2451] 0.8352011 0.8355091 0.8358277 0.8359048 0.8364943
## [2456] 0.8366678 0.8368192 0.8373980 0.8376511 0.8378845
## [2461] 0.8380458 0.8383388 0.8386779 0.8391549 0.8393232
## [2466] 0.8396812 0.8400507 0.8402171 0.8404814 0.8408359
## [2471] 0.8410865 0.8413013 0.8418533 0.8421351 0.8423903
## [2476] 0.8427351 0.8428032 0.8432571 0.8434311 0.8438987
## [2481] 0.8441460 0.8444033 0.8448204 0.8449889 0.8454831
## [2486] 0.8456651 0.8459564 0.8461058 0.8465293 0.8467681
## [2491] 0.8471583 0.8475157 0.8478270 0.8479665 0.8483381
## [2496] 0.8485950 0.8489977 0.8491856 0.8494192 0.8499140
## [2501] 0.8501544 0.8503957 0.8507692 0.8509201 0.8513614
## [2506] 0.8516114 0.8520194 0.8522263 0.8524547 0.8529321
## [2511] 0.8532003 0.8533992 0.8536585 0.8539249 0.8544126
## [2516] 0.8547840 0.8550358 0.8552410 0.8555916 0.8558354
## [2521] 0.8561662 0.8565608 0.8566136 0.8569559 0.8572688
## [2526] 0.8577064 0.8579935 0.8583670 0.8585026 0.8588033
## [2531] 0.8590758 0.8593425 0.8597727 0.8601897 0.8604586
## [2536] 0.8605649 0.8610320 0.8613659 0.8614412 0.8619364
## [2541] 0.8620609 0.8624079 0.8628287 0.8630033 0.8633343
## [2546] 0.8636793 0.8638205 0.8643415 0.8646622 0.8648662
## [2551] 0.8651365 0.8655568 0.8657207 0.8659241 0.8664049
## [2556] 0.8666100 0.8670200 0.8671668 0.8676748 0.8678460
## [2561] 0.8680701 0.8683856 0.8688043 0.8689542 0.8692092
## [2566] 0.8697712 0.8700022 0.8703550 0.8705499 0.8709790
## [2571] 0.8710542 0.8715287 0.8717764 0.8719973 0.8723517
## [2576] 0.8727309 0.8729681 0.8732066 0.8736085 0.8739636
## [2581] 0.8740520 0.8743249 0.8747462 0.8751635 0.8753223
## [2586] 0.8757129 0.8760642 0.8762330 0.8766816 0.8767197
## [2591] 0.8771779 0.8774757 0.8776143 0.8779244 0.8783675
## [2596] 0.8786814 0.8788671 0.8793917 0.8794159 0.8797463
## [2601] 0.8800194 0.8804936 0.8808285 0.8810044 0.8812981
## [2606] 0.8817052 0.8819140 0.8822586 0.8825776 0.8828192
## [2611] 0.8830769 0.8833801 0.8837394 0.8841915 0.8844225
## [2616] 0.8845082 0.8848439 0.8852225 0.8856704 0.8858451
## [2621] 0.8860718 0.8863746 0.8866693 0.8869091 0.8872447
## [2626] 0.8876932 0.8880212 0.8883744 0.8886777 0.8887664
## [2631] 0.8890701 0.8894223 0.8896211 0.8899733 0.8902929
## [2636] 0.8906055 0.8909693 0.8913922 0.8915357 0.8918398
## [2641] 0.8921568 0.8923687 0.8927414 0.8931055 0.8933142
## [2646] 0.8936377 0.8938335 0.8943605 0.8944169 0.8949829
## [2651] 0.8951520 0.8955112 0.8958199 0.8959388 0.8963448
## [2656] 0.8967509 0.8970570 0.8972476 0.8976350 0.8979168
## [2661] 0.8981405 0.8985635 0.8986254 0.8989829 0.8994226
## [2666] 0.8995258 0.9000892 0.9001286 0.9004802 0.9009961
## [2671] 0.9011633 0.9013041 0.9016326 0.9020698 0.9024139
## [2676] 0.9025106 0.9028400 0.9033196 0.9035260 0.9039438
## [2681] 0.9041844 0.9043136 0.9046487 0.9050413 0.9053648
## [2686] 0.9055333 0.9058277 0.9063398 0.9065464 0.9067769
## [2691] 0.9071844 0.9075421 0.9078653 0.9081531 0.9083675
## [2696] 0.9085863 0.9088415 0.9093957 0.9094446 0.9099660
## [2701] 0.9100522 0.9103502 0.9106467 0.9111666 0.9113005
## [2706] 0.9117090 0.9120833 0.9121526 0.9124475 0.9128552
## [2711] 0.9131093 0.9135716 0.9136701 0.9140062 0.9143175
## [2716] 0.9146737 0.9150373 0.9153132 0.9156045 0.9157230
## [2721] 0.9161412 0.9165999 0.9168853 0.9171164 0.9173068
## [2726] 0.9176027 0.9178559 0.9181276 0.9185344 0.9189204
## [2731] 0.9192061 0.9195027 0.9196261 0.9200172 0.9204006
## [2736] 0.9206774 0.9208456 0.9212238 0.9215848 0.9219386
## [2741] 0.9220272 0.9225173 0.9226460 0.9231075 0.9234498
## [2746] 0.9235216 0.9239220 0.9243574 0.9245475 0.9248491
## [2751] 0.9250617 0.9253920 0.9257387 0.9260871 0.9263358
## [2756] 0.9265931 0.9268568 0.9273771 0.9274651 0.9278564
## [2761] 0.9280902 0.9284753 0.9288499 0.9290453 0.9294289
## [2766] 0.9296218 0.9299507 0.9302911 0.9306386 0.9309368
## [2771] 0.9310459 0.9314562 0.9317397 0.9320650 0.9324175
## [2776] 0.9325928 0.9330916 0.9333778 0.9336152 0.9337119
## [2781] 0.9340406 0.9344009 0.9348134 0.9351415 0.9353793
## [2786] 0.9356414 0.9360443 0.9361986 0.9366119 0.9367057
## [2791] 0.9370458 0.9375105 0.9378945 0.9379506 0.9382665
## [2796] 0.9386195 0.9389159 0.9392847 0.9395952 0.9398614
## [2801] 0.9400233 0.9405909 0.9406040 0.9411476 0.9412528
## [2806] 0.9416044 0.9419176 0.9421957 0.9426872 0.9429719
## [2811] 0.9432628 0.9434908 0.9436632 0.9440454 0.9442081
## [2816] 0.9446795 0.9449067 0.9452311 0.9455314 0.9458458
## [2821] 0.9460889 0.9463559 0.9468441 0.9471948 0.9474632
## [2826] 0.9476053 0.9480318 0.9483416 0.9486072 0.9489821
## [2831] 0.9492837 0.9495970 0.9498961 0.9499197 0.9503383
## [2836] 0.9506518 0.9509327 0.9513639 0.9516591 0.9519305
## [2841] 0.9522718 0.9524450 0.9527275 0.9529431 0.9532346
## [2846] 0.9537800 0.9538879 0.9541984 0.9545189 0.9548367
## [2851] 0.9550429 0.9553536 0.9557652 0.9560637 0.9563593
## [2856] 0.9567902 0.9570682 0.9573218 0.9576392 0.9578020
## [2861] 0.9580060 0.9583834 0.9586239 0.9589818 0.9594704
## [2866] 0.9595090 0.9598712 0.9601350 0.9604569 0.9607600
## [2871] 0.9610997 0.9615045 0.9617528 0.9621492 0.9623860
## [2876] 0.9625190 0.9630054 0.9633821 0.9634797 0.9639048
## [2881] 0.9640393 0.9643828 0.9648582 0.9649168 0.9653358
## [2886] 0.9656533 0.9660265 0.9661601 0.9664559 0.9668018
## [2891] 0.9670635 0.9674560 0.9677425 0.9679822 0.9682424
## [2896] 0.9685016 0.9690682 0.9692867 0.9694697 0.9699377
## [2901] 0.9701422 0.9703944 0.9706077 0.9709418 0.9714330
## [2906] 0.9717774 0.9718945 0.9723822 0.9726577 0.9727616
## [2911] 0.9731044 0.9734750 0.9738258 0.9739242 0.9744094
## [2916] 0.9746861 0.9748674 0.9752357 0.9755736 0.9758356
## [2921] 0.9762934 0.9763150 0.9767263 0.9769508 0.9772777
## [2926] 0.9777129 0.9780124 0.9782920 0.9785066 0.9788141
## [2931] 0.9792479 0.9794868 0.9797688 0.9799705 0.9803369
## [2936] 0.9806293 0.9809958 0.9813350 0.9814243 0.9819374
## [2941] 0.9822602 0.9823524 0.9826172 0.9829808 0.9833120
## [2946] 0.9837691 0.9838972 0.9843205 0.9844267 0.9848866
## [2951] 0.9852941 0.9854396 0.9857172 0.9860350 0.9863154
## [2956] 0.9865984 0.9868987 0.9871260 0.9875246 0.9877931
## [2961] 0.9882960 0.9883368 0.9887355 0.9891846 0.9894714
## [2966] 0.9895727 0.9900910 0.9902848 0.9906123 0.9908889
## [2971] 0.9910798 0.9915903 0.9916616 0.9919470 0.9922296
## [2976] 0.9925751 0.9929011 0.9932469 0.9934310 0.9937384
## [2981] 0.9942405 0.9944920 0.9946383 0.9949409 0.9952622
## [2986] 0.9957640 0.9960550 0.9962639 0.9965255 0.9969223
## [2991] 0.9971796 0.9975407 0.9977076 0.9981953 0.9983924
## [2996] 0.9985625 0.9988872 0.9992080 0.9994646 0.9998824
sort(unique(xgboost_grid$mtry))
## [1] 1 2 3 4 5 6 7 8 9 10 11 12 13
## [14] 14 15 16 17 18 19 20 21 22 23 24 25 26
## [27] 27 28 29 30 31 32 33 34 35 36 37 38 39
## [40] 40 41 42 43 44 45 46 47 48 49 50 51 52
## [53] 53 54 55 56 57 58 59 60 61 62 63 64 65
## [66] 66 67 68 69 70 71 72 73 74 75 76 77 78
## [79] 79 80 81 82 83 84 85 86 87 88 89 90 91
## [92] 92 93 94 95 96 97 98 99 100 101 102 103 104
## [105] 105 106 107 108 109 110 111 112 113 114 115 116 117
## [118] 118 119 120 121 122 123 124 125 126 127 128 129 130
## [131] 131 132 133 134 135 136 137 138 139 140 141 142 143
## [144] 144 145 146 147 148 149 150 151 152 153 154 155 156
## [157] 157 158 159 160 161 162 163 164 165 166 167
sort(unique(xgboost_grid$learn_rate))
## [1] 0.0000000001004210 0.0000000001010100
## [3] 0.0000000001016635 0.0000000001025669
## [5] 0.0000000001028755 0.0000000001039491
## [7] 0.0000000001049168 0.0000000001052954
## [9] 0.0000000001057045 0.0000000001065451
## [11] 0.0000000001072393 0.0000000001081898
## [13] 0.0000000001091549 0.0000000001094640
## [15] 0.0000000001103571 0.0000000001115821
## [17] 0.0000000001124069 0.0000000001124659
## [19] 0.0000000001136419 0.0000000001144229
## [21] 0.0000000001149404 0.0000000001158707
## [23] 0.0000000001170182 0.0000000001176052
## [25] 0.0000000001181535 0.0000000001192865
## [27] 0.0000000001202820 0.0000000001207269
## [29] 0.0000000001216697 0.0000000001223789
## [31] 0.0000000001230283 0.0000000001241138
## [33] 0.0000000001252061 0.0000000001263030
## [35] 0.0000000001272259 0.0000000001279957
## [37] 0.0000000001284447 0.0000000001292776
## [39] 0.0000000001302362 0.0000000001311214
## [41] 0.0000000001322187 0.0000000001329960
## [43] 0.0000000001337348 0.0000000001349895
## [45] 0.0000000001361969 0.0000000001373164
## [47] 0.0000000001377949 0.0000000001385267
## [49] 0.0000000001398911 0.0000000001407891
## [51] 0.0000000001413928 0.0000000001424190
## [53] 0.0000000001438504 0.0000000001445054
## [55] 0.0000000001459349 0.0000000001464208
## [57] 0.0000000001480825 0.0000000001486324
## [59] 0.0000000001500431 0.0000000001503771
## [61] 0.0000000001515914 0.0000000001533655
## [63] 0.0000000001536249 0.0000000001551179
## [65] 0.0000000001556427 0.0000000001574561
## [67] 0.0000000001584128 0.0000000001591947
## [69] 0.0000000001601835 0.0000000001615754
## [71] 0.0000000001629061 0.0000000001644306
## [73] 0.0000000001646757 0.0000000001659038
## [75] 0.0000000001672128 0.0000000001685831
## [77] 0.0000000001691029 0.0000000001712023
## [79] 0.0000000001715473 0.0000000001726162
## [81] 0.0000000001747548 0.0000000001753631
## [83] 0.0000000001772092 0.0000000001780679
## [85] 0.0000000001791435 0.0000000001802375
## [87] 0.0000000001819940 0.0000000001834261
## [89] 0.0000000001839964 0.0000000001853305
## [91] 0.0000000001872323 0.0000000001877239
## [93] 0.0000000001893611 0.0000000001913579
## [95] 0.0000000001921887 0.0000000001934374
## [97] 0.0000000001943954 0.0000000001960442
## [99] 0.0000000001978469 0.0000000001982988
## [101] 0.0000000002006246 0.0000000002015847
## [103] 0.0000000002027208 0.0000000002050833
## [105] 0.0000000002062117 0.0000000002065927
## [107] 0.0000000002090824 0.0000000002094499
## [109] 0.0000000002119949 0.0000000002137913
## [111] 0.0000000002141554 0.0000000002159383
## [113] 0.0000000002172012 0.0000000002186779
## [115] 0.0000000002200902 0.0000000002217961
## [117] 0.0000000002237441 0.0000000002245921
## [119] 0.0000000002259517 0.0000000002288149
## [121] 0.0000000002291771 0.0000000002319320
## [123] 0.0000000002329211 0.0000000002354357
## [125] 0.0000000002361643 0.0000000002372772
## [127] 0.0000000002391240 0.0000000002406979
## [129] 0.0000000002421512 0.0000000002454017
## [131] 0.0000000002459562 0.0000000002480581
## [133] 0.0000000002493342 0.0000000002507458
## [135] 0.0000000002530563 0.0000000002548779
## [137] 0.0000000002574429 0.0000000002590182
## [139] 0.0000000002609837 0.0000000002616884
## [141] 0.0000000002637916 0.0000000002664940
## [143] 0.0000000002675251 0.0000000002686080
## [145] 0.0000000002708630 0.0000000002739399
## [147] 0.0000000002744253 0.0000000002760591
## [149] 0.0000000002793212 0.0000000002805150
## [151] 0.0000000002837624 0.0000000002841588
## [153] 0.0000000002866919 0.0000000002886854
## [155] 0.0000000002900805 0.0000000002937392
## [157] 0.0000000002952579 0.0000000002974704
## [159] 0.0000000002994211 0.0000000002999519
## [161] 0.0000000003024641 0.0000000003054307
## [163] 0.0000000003062248 0.0000000003098636
## [165] 0.0000000003120689 0.0000000003136996
## [167] 0.0000000003150685 0.0000000003171166
## [169] 0.0000000003195280 0.0000000003229955
## [171] 0.0000000003238720 0.0000000003260465
## [173] 0.0000000003294380 0.0000000003307979
## [175] 0.0000000003337678 0.0000000003367044
## [177] 0.0000000003392658 0.0000000003407815
## [179] 0.0000000003431329 0.0000000003447933
## [181] 0.0000000003473353 0.0000000003495381
## [183] 0.0000000003525700 0.0000000003552658
## [185] 0.0000000003583403 0.0000000003592165
## [187] 0.0000000003614659 0.0000000003645142
## [189] 0.0000000003670205 0.0000000003706499
## [191] 0.0000000003740541 0.0000000003747265
## [193] 0.0000000003791447 0.0000000003816986
## [195] 0.0000000003844779 0.0000000003860467
## [197] 0.0000000003895792 0.0000000003920683
## [199] 0.0000000003938092 0.0000000003977122
## [201] 0.0000000003987229 0.0000000004016029
## [203] 0.0000000004051100 0.0000000004073775
## [205] 0.0000000004093484 0.0000000004134881
## [207] 0.0000000004176265 0.0000000004206547
## [209] 0.0000000004232958 0.0000000004237076
## [211] 0.0000000004266012 0.0000000004324141
## [213] 0.0000000004338589 0.0000000004379613
## [215] 0.0000000004410302 0.0000000004416161
## [217] 0.0000000004450991 0.0000000004490966
## [219] 0.0000000004510339 0.0000000004566932
## [221] 0.0000000004583735 0.0000000004632293
## [223] 0.0000000004648920 0.0000000004672702
## [225] 0.0000000004722116 0.0000000004757098
## [227] 0.0000000004765576 0.0000000004823740
## [229] 0.0000000004833804 0.0000000004897761
## [231] 0.0000000004918849 0.0000000004940155
## [233] 0.0000000004982926 0.0000000005033941
## [235] 0.0000000005069328 0.0000000005080779
## [237] 0.0000000005107743 0.0000000005166260
## [239] 0.0000000005199814 0.0000000005234361
## [241] 0.0000000005272910 0.0000000005287419
## [243] 0.0000000005346080 0.0000000005359434
## [245] 0.0000000005420333 0.0000000005437879
## [247] 0.0000000005480408 0.0000000005540095
## [249] 0.0000000005556324 0.0000000005612910
## [251] 0.0000000005638033 0.0000000005690451
## [253] 0.0000000005725194 0.0000000005743549
## [255] 0.0000000005790991 0.0000000005845561
## [257] 0.0000000005895168 0.0000000005931314
## [259] 0.0000000005974127 0.0000000005985517
## [261] 0.0000000006061006 0.0000000006069022
## [263] 0.0000000006139654 0.0000000006192968
## [265] 0.0000000006213362 0.0000000006243851
## [267] 0.0000000006322812 0.0000000006358661
## [269] 0.0000000006380778 0.0000000006440264
## [271] 0.0000000006498706 0.0000000006508835
## [273] 0.0000000006553084 0.0000000006628139
## [275] 0.0000000006680403 0.0000000006693081
## [277] 0.0000000006774997 0.0000000006782396
## [279] 0.0000000006869389 0.0000000006915120
## [281] 0.0000000006957644 0.0000000006998418
## [283] 0.0000000007019137 0.0000000007095735
## [285] 0.0000000007119720 0.0000000007200089
## [287] 0.0000000007253264 0.0000000007284074
## [289] 0.0000000007348063 0.0000000007376271
## [291] 0.0000000007456283 0.0000000007488329
## [293] 0.0000000007564578 0.0000000007584724
## [295] 0.0000000007653840 0.0000000007707636
## [297] 0.0000000007747323 0.0000000007832782
## [299] 0.0000000007868179 0.0000000007894804
## [301] 0.0000000007967690 0.0000000008021476
## [303] 0.0000000008069373 0.0000000008138723
## [305] 0.0000000008191143 0.0000000008241398
## [307] 0.0000000008314019 0.0000000008355334
## [309] 0.0000000008428663 0.0000000008485166
## [311] 0.0000000008544674 0.0000000008611373
## [313] 0.0000000008654844 0.0000000008739248
## [315] 0.0000000008754063 0.0000000008862290
## [317] 0.0000000008884161 0.0000000008991419
## [319] 0.0000000008996605 0.0000000009103583
## [321] 0.0000000009135207 0.0000000009244906
## [323] 0.0000000009294892 0.0000000009350344
## [325] 0.0000000009385079 0.0000000009501850
## [327] 0.0000000009522859 0.0000000009587780
## [329] 0.0000000009687378 0.0000000009719120
## [331] 0.0000000009836750 0.0000000009895859
## [333] 0.0000000009909716 0.0000000009999079
## [335] 0.0000000010110234 0.0000000010119614
## [337] 0.0000000010187049 0.0000000010297753
## [339] 0.0000000010366291 0.0000000010434933
## [341] 0.0000000010516107 0.0000000010571021
## [343] 0.0000000010674558 0.0000000010740469
## [345] 0.0000000010815280 0.0000000010879261
## [347] 0.0000000010978720 0.0000000011043304
## [349] 0.0000000011109061 0.0000000011173870
## [351] 0.0000000011290232 0.0000000011306461
## [353] 0.0000000011395651 0.0000000011534324
## [355] 0.0000000011576478 0.0000000011679823
## [357] 0.0000000011743953 0.0000000011817892
## [359] 0.0000000011929942 0.0000000011966858
## [361] 0.0000000012098644 0.0000000012169945
## [363] 0.0000000012267556 0.0000000012354626
## [365] 0.0000000012408393 0.0000000012522949
## [367] 0.0000000012609378 0.0000000012700417
## [369] 0.0000000012781395 0.0000000012812715
## [371] 0.0000000012899044 0.0000000012995305
## [373] 0.0000000013148720 0.0000000013182439
## [375] 0.0000000013323095 0.0000000013347917
## [377] 0.0000000013474439 0.0000000013591447
## [379] 0.0000000013672918 0.0000000013729425
## [381] 0.0000000013844090 0.0000000013942377
## [383] 0.0000000014068762 0.0000000014161972
## [385] 0.0000000014281277 0.0000000014381122
## [387] 0.0000000014470517 0.0000000014582496
## [389] 0.0000000014591455 0.0000000014751487
## [391] 0.0000000014865085 0.0000000014915187
## [393] 0.0000000015037786 0.0000000015122665
## [395] 0.0000000015246840 0.0000000015386199
## [397] 0.0000000015471779 0.0000000015586693
## [399] 0.0000000015707661 0.0000000015815531
## [401] 0.0000000015950422 0.0000000015996904
## [403] 0.0000000016146407 0.0000000016258893
## [405] 0.0000000016300415 0.0000000016476695
## [407] 0.0000000016547111 0.0000000016679599
## [409] 0.0000000016756745 0.0000000016890527
## [411] 0.0000000017015362 0.0000000017179247
## [413] 0.0000000017319626 0.0000000017430168
## [415] 0.0000000017491018 0.0000000017631530
## [417] 0.0000000017765652 0.0000000017906791
## [419] 0.0000000018035654 0.0000000018187372
## [421] 0.0000000018223283 0.0000000018376906
## [423] 0.0000000018560998 0.0000000018661811
## [425] 0.0000000018802970 0.0000000018899567
## [427] 0.0000000019017130 0.0000000019181523
## [429] 0.0000000019350864 0.0000000019436545
## [431] 0.0000000019508137 0.0000000019654238
## [433] 0.0000000019854749 0.0000000019979468
## [435] 0.0000000020070957 0.0000000020312608
## [437] 0.0000000020432136 0.0000000020476813
## [439] 0.0000000020630655 0.0000000020882340
## [441] 0.0000000020910701 0.0000000021152583
## [443] 0.0000000021308925 0.0000000021475044
## [445] 0.0000000021567980 0.0000000021692642
## [447] 0.0000000021883511 0.0000000021993437
## [449] 0.0000000022187484 0.0000000022290218
## [451] 0.0000000022454508 0.0000000022620973
## [453] 0.0000000022700156 0.0000000022908122
## [455] 0.0000000023125990 0.0000000023242710
## [457] 0.0000000023478157 0.0000000023649363
## [459] 0.0000000023773748 0.0000000023952608
## [461] 0.0000000024049335 0.0000000024219754
## [463] 0.0000000024373896 0.0000000024527899
## [465] 0.0000000024790083 0.0000000024864276
## [467] 0.0000000025130520 0.0000000025332490
## [469] 0.0000000025442621 0.0000000025574454
## [471] 0.0000000025711686 0.0000000026010447
## [473] 0.0000000026146151 0.0000000026322898
## [475] 0.0000000026495603 0.0000000026696942
## [477] 0.0000000026813041 0.0000000027126388
## [479] 0.0000000027277197 0.0000000027374223
## [481] 0.0000000027583996 0.0000000027846550
## [483] 0.0000000028038846 0.0000000028214885
## [485] 0.0000000028350635 0.0000000028621286
## [487] 0.0000000028788350 0.0000000028960679
## [489] 0.0000000029139494 0.0000000029356060
## [491] 0.0000000029524241 0.0000000029903215
## [493] 0.0000000030057251 0.0000000030281902
## [495] 0.0000000030480203 0.0000000030688887
## [497] 0.0000000030817659 0.0000000031009261
## [499] 0.0000000031292350 0.0000000031503337
## [501] 0.0000000031833518 0.0000000031913889
## [503] 0.0000000032107812 0.0000000032290292
## [505] 0.0000000032666364 0.0000000032753670
## [507] 0.0000000033004103 0.0000000033294381
## [509] 0.0000000033459729 0.0000000033847640
## [511] 0.0000000033983415 0.0000000034332479
## [513] 0.0000000034433290 0.0000000034667678
## [515] 0.0000000034998706 0.0000000035131181
## [517] 0.0000000035340223 0.0000000035659797
## [519] 0.0000000035857737 0.0000000036286102
## [521] 0.0000000036370334 0.0000000036595946
## [523] 0.0000000037051977 0.0000000037090158
## [525] 0.0000000037329286 0.0000000037625968
## [527] 0.0000000037958135 0.0000000038308110
## [529] 0.0000000038453411 0.0000000038727563
## [531] 0.0000000038928586 0.0000000039179680
## [533] 0.0000000039489790 0.0000000039890950
## [535] 0.0000000040215762 0.0000000040541137
## [537] 0.0000000040742255 0.0000000041088810
## [539] 0.0000000041384180 0.0000000041646493
## [541] 0.0000000041780294 0.0000000042097690
## [543] 0.0000000042462439 0.0000000042748709
## [545] 0.0000000043136228 0.0000000043175342
## [547] 0.0000000043496660 0.0000000043819010
## [549] 0.0000000044235277 0.0000000044496732
## [551] 0.0000000044763183 0.0000000045129252
## [553] 0.0000000045580000 0.0000000045762862
## [555] 0.0000000046182177 0.0000000046487478
## [557] 0.0000000046787675 0.0000000046901769
## [559] 0.0000000047310013 0.0000000047767708
## [561] 0.0000000048019702 0.0000000048302945
## [563] 0.0000000048806334 0.0000000048917066
## [565] 0.0000000049492835 0.0000000049790757
## [567] 0.0000000050010775 0.0000000050280340
## [569] 0.0000000050774044 0.0000000050955741
## [571] 0.0000000051586857 0.0000000051965851
## [573] 0.0000000052065095 0.0000000052501587
## [575] 0.0000000052743600 0.0000000053118334
## [577] 0.0000000053755467 0.0000000053918685
## [579] 0.0000000054222534 0.0000000054605701
## [581] 0.0000000055083696 0.0000000055539791
## [583] 0.0000000056007742 0.0000000056448286
## [585] 0.0000000056527286 0.0000000057234451
## [587] 0.0000000057406102 0.0000000057827910
## [589] 0.0000000058199438 0.0000000058711840
## [591] 0.0000000059215918 0.0000000059490513
## [593] 0.0000000060000411 0.0000000060196931
## [595] 0.0000000060798188 0.0000000061058852
## [597] 0.0000000061548504 0.0000000062027196
## [599] 0.0000000062638363 0.0000000062787779
## [601] 0.0000000063293926 0.0000000063552624
## [603] 0.0000000064315506 0.0000000064517139
## [605] 0.0000000064864395 0.0000000065692358
## [607] 0.0000000066103702 0.0000000066666657
## [609] 0.0000000067141349 0.0000000067530892
## [611] 0.0000000068026643 0.0000000068140953
## [613] 0.0000000068996037 0.0000000069499046
## [615] 0.0000000069945743 0.0000000070268616
## [617] 0.0000000070823919 0.0000000071006184
## [619] 0.0000000071918050 0.0000000072117588
## [621] 0.0000000072859923 0.0000000072959872
## [623] 0.0000000073607893 0.0000000074341162
## [625] 0.0000000074923231 0.0000000075137926
## [627] 0.0000000075535896 0.0000000076377042
## [629] 0.0000000077026530 0.0000000077596587
## [631] 0.0000000077670052 0.0000000078335877
## [633] 0.0000000078960931 0.0000000079471855
## [635] 0.0000000080165633 0.0000000080846464
## [637] 0.0000000081030934 0.0000000082032236
## [639] 0.0000000082207703 0.0000000082713433
## [641] 0.0000000083348307 0.0000000083778112
## [643] 0.0000000084846109 0.0000000085324602
## [645] 0.0000000085747361 0.0000000086464343
## [647] 0.0000000086836167 0.0000000087793845
## [649] 0.0000000088392796 0.0000000088910338
## [651] 0.0000000089465268 0.0000000090190401
## [653] 0.0000000090661726 0.0000000091134542
## [655] 0.0000000091773699 0.0000000092779143
## [657] 0.0000000093515970 0.0000000094089854
## [659] 0.0000000094540242 0.0000000095249798
## [661] 0.0000000095667778 0.0000000096184333
## [663] 0.0000000097333598 0.0000000098153378
## [665] 0.0000000098437368 0.0000000099090055
## [667] 0.0000000099706858 0.0000000100820584
## [669] 0.0000000101318479 0.0000000102226493
## [671] 0.0000000102791019 0.0000000103745703
## [673] 0.0000000104060313 0.0000000104948445
## [675] 0.0000000105889534 0.0000000106261356
## [677] 0.0000000107397136 0.0000000107534136
## [679] 0.0000000108541155 0.0000000109067972
## [681] 0.0000000109961098 0.0000000110564554
## [683] 0.0000000111390996 0.0000000112042046
## [685] 0.0000000113360004 0.0000000113530706
## [687] 0.0000000114832753 0.0000000115129760
## [689] 0.0000000116025803 0.0000000116854575
## [691] 0.0000000117718448 0.0000000118441751
## [693] 0.0000000119458353 0.0000000120025921
## [695] 0.0000000120823268 0.0000000121688094
## [697] 0.0000000122770046 0.0000000123958799
## [699] 0.0000000124494064 0.0000000125036833
## [701] 0.0000000126199616 0.0000000127285467
## [703] 0.0000000128256255 0.0000000128765690
## [705] 0.0000000129444593 0.0000000130889875
## [707] 0.0000000132028807 0.0000000133013576
## [709] 0.0000000133076406 0.0000000133994497
## [711] 0.0000000135709262 0.0000000136423471
## [713] 0.0000000136960824 0.0000000138269739
## [715] 0.0000000138734187 0.0000000139815278
## [717] 0.0000000141302924 0.0000000142426599
## [719] 0.0000000143111399 0.0000000144266700
## [721] 0.0000000145521262 0.0000000145824369
## [723] 0.0000000147222182 0.0000000147976888
## [725] 0.0000000148868675 0.0000000150429231
## [727] 0.0000000151071613 0.0000000152074228
## [729] 0.0000000153063966 0.0000000154608991
## [731] 0.0000000155879903 0.0000000156691899
## [733] 0.0000000157329520 0.0000000159085435
## [735] 0.0000000160009121 0.0000000161327780
## [737] 0.0000000162500448 0.0000000163029732
## [739] 0.0000000164411758 0.0000000165093788
## [741] 0.0000000166423654 0.0000000167275412
## [743] 0.0000000169300121 0.0000000170021848
## [745] 0.0000000170741334 0.0000000172704291
## [747] 0.0000000173231008 0.0000000174982451
## [749] 0.0000000176031962 0.0000000176964629
## [751] 0.0000000178669764 0.0000000179733482
## [753] 0.0000000181206772 0.0000000181957295
## [755] 0.0000000182887230 0.0000000184532370
## [757] 0.0000000186630487 0.0000000187044152
## [759] 0.0000000189063776 0.0000000190130887
## [761] 0.0000000191718148 0.0000000192101604
## [763] 0.0000000193526749 0.0000000194869387
## [765] 0.0000000196159514 0.0000000197579692
## [767] 0.0000000199135475 0.0000000200697070
## [769] 0.0000000202533632 0.0000000203997560
## [771] 0.0000000204938531 0.0000000206844751
## [773] 0.0000000207488662 0.0000000208689971
## [775] 0.0000000211181664 0.0000000212321048
## [777] 0.0000000213633629 0.0000000215206983
## [779] 0.0000000216255217 0.0000000217969519
## [781] 0.0000000220113382 0.0000000220474396
## [783] 0.0000000222889643 0.0000000224543557
## [785] 0.0000000225497045 0.0000000226945156
## [787] 0.0000000229572658 0.0000000229964291
## [789] 0.0000000232691828 0.0000000234391966
## [791] 0.0000000234779930 0.0000000236592345
## [793] 0.0000000239219044 0.0000000239473619
## [795] 0.0000000242637029 0.0000000242734390
## [797] 0.0000000245647025 0.0000000247194645
## [799] 0.0000000247747840 0.0000000250394289
## [801] 0.0000000251602302 0.0000000253525298
## [803] 0.0000000255621070 0.0000000256816320
## [805] 0.0000000259736614 0.0000000261695293
## [807] 0.0000000263507462 0.0000000264301744
## [809] 0.0000000267144126 0.0000000268431360
## [811] 0.0000000270816705 0.0000000271326589
## [813] 0.0000000274505863 0.0000000276681942
## [815] 0.0000000278535407 0.0000000278823494
## [817] 0.0000000282349867 0.0000000284117587
## [819] 0.0000000284864600 0.0000000288391729
## [821] 0.0000000289325846 0.0000000290487960
## [823] 0.0000000292847292 0.0000000294517750
## [825] 0.0000000297745633 0.0000000299131969
## [827] 0.0000000301433639 0.0000000302938082
## [829] 0.0000000306354985 0.0000000308702125
## [831] 0.0000000311031711 0.0000000312019226
## [833] 0.0000000313896532 0.0000000315719370
## [835] 0.0000000319784779 0.0000000321425104
## [837] 0.0000000322746024 0.0000000324711252
## [839] 0.0000000327923226 0.0000000331077937
## [841] 0.0000000333084161 0.0000000334984612
## [843] 0.0000000335865723 0.0000000339168828
## [845] 0.0000000341621711 0.0000000343736655
## [847] 0.0000000347150453 0.0000000349656926
## [849] 0.0000000350480740 0.0000000353202781
## [851] 0.0000000355819076 0.0000000358854930
## [853] 0.0000000362103294 0.0000000364664900
## [855] 0.0000000366318612 0.0000000368522392
## [857] 0.0000000370214712 0.0000000373012114
## [859] 0.0000000375597273 0.0000000378168763
## [861] 0.0000000382569023 0.0000000383292417
## [863] 0.0000000385881889 0.0000000388246102
## [865] 0.0000000393064801 0.0000000394598216
## [867] 0.0000000398069288 0.0000000400333216
## [869] 0.0000000403612668 0.0000000407066464
## [871] 0.0000000408949630 0.0000000412809540
## [873] 0.0000000415778255 0.0000000416447991
## [875] 0.0000000419954071 0.0000000422983326
## [877] 0.0000000426784010 0.0000000427972721
## [879] 0.0000000433189628 0.0000000436086569
## [881] 0.0000000437892734 0.0000000439888220
## [883] 0.0000000443861883 0.0000000446692442
## [885] 0.0000000450180533 0.0000000452998461
## [887] 0.0000000455618975 0.0000000458325079
## [889] 0.0000000464317454 0.0000000465699427
## [891] 0.0000000468090347 0.0000000471463713
## [893] 0.0000000475244760 0.0000000479358047
## [895] 0.0000000482737121 0.0000000485844461
## [897] 0.0000000488311111 0.0000000493394795
## [899] 0.0000000494387634 0.0000000498046875
## [901] 0.0000000502591104 0.0000000506622038
## [903] 0.0000000508722811 0.0000000515134055
## [905] 0.0000000517183005 0.0000000521702822
## [907] 0.0000000525134703 0.0000000527248062
## [909] 0.0000000530425093 0.0000000536646699
## [911] 0.0000000538543487 0.0000000542580992
## [913] 0.0000000544909426 0.0000000550722710
## [915] 0.0000000555540000 0.0000000557648072
## [917] 0.0000000560629048 0.0000000566388218
## [919] 0.0000000569727058 0.0000000573860799
## [921] 0.0000000577082603 0.0000000580130734
## [923] 0.0000000584525081 0.0000000590641244
## [925] 0.0000000595487549 0.0000000598516305
## [927] 0.0000000600158477 0.0000000607024465
## [929] 0.0000000610189350 0.0000000615551092
## [931] 0.0000000616914607 0.0000000621327238
## [933] 0.0000000625832572 0.0000000629948597
## [935] 0.0000000637420935 0.0000000641986017
## [937] 0.0000000644673389 0.0000000650384154
## [939] 0.0000000653930209 0.0000000658554204
## [941] 0.0000000661517034 0.0000000666287537
## [943] 0.0000000673196106 0.0000000675195373
## [945] 0.0000000682004674 0.0000000684076948
## [947] 0.0000000690521385 0.0000000698196088
## [949] 0.0000000700932961 0.0000000705767217
## [951] 0.0000000708915667 0.0000000716662203
## [953] 0.0000000720467123 0.0000000724659024
## [955] 0.0000000729295901 0.0000000733823707
## [957] 0.0000000738172217 0.0000000744730802
## [959] 0.0000000752359724 0.0000000755092362
## [961] 0.0000000760954393 0.0000000768178357
## [963] 0.0000000772813113 0.0000000774748353
## [965] 0.0000000782341750 0.0000000786688672
## [967] 0.0000000795412490 0.0000000798522342
## [969] 0.0000000804386770 0.0000000812546850
## [971] 0.0000000815823765 0.0000000822430395
## [973] 0.0000000824919870 0.0000000832415361
## [975] 0.0000000839451335 0.0000000845376591
## [977] 0.0000000848196948 0.0000000853932425
## [979] 0.0000000860423219 0.0000000867781725
## [981] 0.0000000875407036 0.0000000877679083
## [983] 0.0000000889184772 0.0000000895197106
## [985] 0.0000000897720954 0.0000000907077234
## [987] 0.0000000913451925 0.0000000917118245
## [989] 0.0000000926185967 0.0000000927966019
## [991] 0.0000000935234737 0.0000000944357840
## [993] 0.0000000948207108 0.0000000957177045
## [995] 0.0000000962115060 0.0000000969948821
## [997] 0.0000000973737698 0.0000000984864573
## [999] 0.0000000990067797 0.0000000993961332
## [1001] 0.0000001000761624 0.0000001010483385
## [1003] 0.0000001017950636 0.0000001026398641
## [1005] 0.0000001033252546 0.0000001041861904
## [1007] 0.0000001047406199 0.0000001054034814
## [1009] 0.0000001058701914 0.0000001066196460
## [1011] 0.0000001077203607 0.0000001081050024
## [1013] 0.0000001092859247 0.0000001100975708
## [1015] 0.0000001102338704 0.0000001109715380
## [1017] 0.0000001123623487 0.0000001129009345
## [1019] 0.0000001135505095 0.0000001147581842
## [1021] 0.0000001155846536 0.0000001162300107
## [1023] 0.0000001169888627 0.0000001172593783
## [1025] 0.0000001186091018 0.0000001189578141
## [1027] 0.0000001197495344 0.0000001205180795
## [1029] 0.0000001215262259 0.0000001228783101
## [1031] 0.0000001233766169 0.0000001242615861
## [1033] 0.0000001252023055 0.0000001262795284
## [1035] 0.0000001267900152 0.0000001278274515
## [1037] 0.0000001283503590 0.0000001294868298
## [1039] 0.0000001305902824 0.0000001317049534
## [1041] 0.0000001322994880 0.0000001332852036
## [1043] 0.0000001344603154 0.0000001352990039
## [1045] 0.0000001361423007 0.0000001371421195
## [1047] 0.0000001381538572 0.0000001387094537
## [1049] 0.0000001402628903 0.0000001407698343
## [1051] 0.0000001414514499 0.0000001423655412
## [1053] 0.0000001435805659 0.0000001442787343
## [1055] 0.0000001453465130 0.0000001471097657
## [1057] 0.0000001475378538 0.0000001486496607
## [1059] 0.0000001492888593 0.0000001511183088
## [1061] 0.0000001518860831 0.0000001529365908
## [1063] 0.0000001539659146 0.0000001555284785
## [1065] 0.0000001562965202 0.0000001576279280
## [1067] 0.0000001586067766 0.0000001596759685
## [1069] 0.0000001602715483 0.0000001616485913
## [1071] 0.0000001626523705 0.0000001636663832
## [1073] 0.0000001652141186 0.0000001657446258
## [1075] 0.0000001668197499 0.0000001679601644
## [1077] 0.0000001700310152 0.0000001703425886
## [1079] 0.0000001717740118 0.0000001727656848
## [1081] 0.0000001746087518 0.0000001759032259
## [1083] 0.0000001763719154 0.0000001781652595
## [1085] 0.0000001796363801 0.0000001810899235
## [1087] 0.0000001815303602 0.0000001826749426
## [1089] 0.0000001841903474 0.0000001857708599
## [1091] 0.0000001862968481 0.0000001877513351
## [1093] 0.0000001892357106 0.0000001905980970
## [1095] 0.0000001919048556 0.0000001929766858
## [1097] 0.0000001945277315 0.0000001959150954
## [1099] 0.0000001980152704 0.0000001990707062
## [1101] 0.0000001998386794 0.0000002010264844
## [1103] 0.0000002032454645 0.0000002045734242
## [1105] 0.0000002058723596 0.0000002067691619
## [1107] 0.0000002085953173 0.0000002094287001
## [1109] 0.0000002121339373 0.0000002135868716
## [1111] 0.0000002143124230 0.0000002155433592
## [1113] 0.0000002179985625 0.0000002188326339
## [1115] 0.0000002209045788 0.0000002225079385
## [1117] 0.0000002236650382 0.0000002244505990
## [1119] 0.0000002272611343 0.0000002285112091
## [1121] 0.0000002291492557 0.0000002322369356
## [1123] 0.0000002328757168 0.0000002346367830
## [1125] 0.0000002367086710 0.0000002374541826
## [1127] 0.0000002392109061 0.0000002412829508
## [1129] 0.0000002434505109 0.0000002449241121
## [1131] 0.0000002465204802 0.0000002480485767
## [1133] 0.0000002493320266 0.0000002514488486
## [1135] 0.0000002528569815 0.0000002544412582
## [1137] 0.0000002560239959 0.0000002586475750
## [1139] 0.0000002612010731 0.0000002613813280
## [1141] 0.0000002636831614 0.0000002648621432
## [1143] 0.0000002680694478 0.0000002698124696
## [1145] 0.0000002708860493 0.0000002724892915
## [1147] 0.0000002752568658 0.0000002762771180
## [1149] 0.0000002793280939 0.0000002808010353
## [1151] 0.0000002819070646 0.0000002847236096
## [1153] 0.0000002876610052 0.0000002884997542
## [1155] 0.0000002915564059 0.0000002936784690
## [1157] 0.0000002940039685 0.0000002973878594
## [1159] 0.0000002987844647 0.0000003016905814
## [1161] 0.0000003037632924 0.0000003054738921
## [1163] 0.0000003065925918 0.0000003095076911
## [1165] 0.0000003105774390 0.0000003128610505
## [1167] 0.0000003159761892 0.0000003183896987
## [1169] 0.0000003202131484 0.0000003224419922
## [1171] 0.0000003250632736 0.0000003259516917
## [1173] 0.0000003292246232 0.0000003306712578
## [1175] 0.0000003338568728 0.0000003367873718
## [1177] 0.0000003385489808 0.0000003401521927
## [1179] 0.0000003430805126 0.0000003460987460
## [1181] 0.0000003482161095 0.0000003502266910
## [1183] 0.0000003538291991 0.0000003554505963
## [1185] 0.0000003584662847 0.0000003606548698
## [1187] 0.0000003628993132 0.0000003651940898
## [1189] 0.0000003673669885 0.0000003693781949
## [1191] 0.0000003738309170 0.0000003746823356
## [1193] 0.0000003773344635 0.0000003814483649
## [1195] 0.0000003842770765 0.0000003848318440
## [1197] 0.0000003883792398 0.0000003923490435
## [1199] 0.0000003927690509 0.0000003965337216
## [1201] 0.0000004002648129 0.0000004014184891
## [1203] 0.0000004053162362 0.0000004074876624
## [1205] 0.0000004112594942 0.0000004135035932
## [1207] 0.0000004176814203 0.0000004205765965
## [1209] 0.0000004230432699 0.0000004251399933
## [1211] 0.0000004269080487 0.0000004324361160
## [1213] 0.0000004337978904 0.0000004356442764
## [1215] 0.0000004415604424 0.0000004421249543
## [1217] 0.0000004468422362 0.0000004490486883
## [1219] 0.0000004529886999 0.0000004550093831
## [1221] 0.0000004596907560 0.0000004629127044
## [1223] 0.0000004648320241 0.0000004690629669
## [1225] 0.0000004703844411 0.0000004735034923
## [1227] 0.0000004772082145 0.0000004810374697
## [1229] 0.0000004851379783 0.0000004882942586
## [1231] 0.0000004927047784 0.0000004952917026
## [1233] 0.0000004994190025 0.0000005017267570
## [1235] 0.0000005055883013 0.0000005075786582
## [1237] 0.0000005137394361 0.0000005154403964
## [1239] 0.0000005186274616 0.0000005234527209
## [1241] 0.0000005273489414 0.0000005319117129
## [1243] 0.0000005331425815 0.0000005381632190
## [1245] 0.0000005428094517 0.0000005448812236
## [1247] 0.0000005501636273 0.0000005532689059
## [1249] 0.0000005577982505 0.0000005585095642
## [1251] 0.0000005646318134 0.0000005663162072
## [1253] 0.0000005710789039 0.0000005764991871
## [1255] 0.0000005815491093 0.0000005840136493
## [1257] 0.0000005877329353 0.0000005904647944
## [1259] 0.0000005944806213 0.0000006015769819
## [1261] 0.0000006031615565 0.0000006088184965
## [1263] 0.0000006140777016 0.0000006160618648
## [1265] 0.0000006232019456 0.0000006260032507
## [1267] 0.0000006303648825 0.0000006337648982
## [1269] 0.0000006408696313 0.0000006432994939
## [1271] 0.0000006471981484 0.0000006539772706
## [1273] 0.0000006587713494 0.0000006614506870
## [1275] 0.0000006668593569 0.0000006702733732
## [1277] 0.0000006752649656 0.0000006819741628
## [1279] 0.0000006829148191 0.0000006886018348
## [1281] 0.0000006939776640 0.0000007004921905
## [1283] 0.0000007052643572 0.0000007072064888
## [1285] 0.0000007117592859 0.0000007172654225
## [1287] 0.0000007237144004 0.0000007269635169
## [1289] 0.0000007351309451 0.0000007367973030
## [1291] 0.0000007427237314 0.0000007494723956
## [1293] 0.0000007557257756 0.0000007599043215
## [1295] 0.0000007669167522 0.0000007689022154
## [1297] 0.0000007750129074 0.0000007833315568
## [1299] 0.0000007864827446 0.0000007939178743
## [1301] 0.0000007992855605 0.0000008013370548
## [1303] 0.0000008084827505 0.0000008165326376
## [1305] 0.0000008219921760 0.0000008233783430
## [1307] 0.0000008296134234 0.0000008347283040
## [1309] 0.0000008429731811 0.0000008496142848
## [1311] 0.0000008535387346 0.0000008605570929
## [1313] 0.0000008646631454 0.0000008713489513
## [1315] 0.0000008756667442 0.0000008813250360
## [1317] 0.0000008913312668 0.0000008965322113
## [1319] 0.0000009006897861 0.0000009106478279
## [1321] 0.0000009125568098 0.0000009207404215
## [1323] 0.0000009257048866 0.0000009367309597
## [1325] 0.0000009402836488 0.0000009453503239
## [1327] 0.0000009568815185 0.0000009630304606
## [1329] 0.0000009683112904 0.0000009741931205
## [1331] 0.0000009792050061 0.0000009874219426
## [1333] 0.0000009916622420 0.0000009982585821
## [1335] 0.0000010056536940 0.0000010141386394
## [1337] 0.0000010205327640 0.0000010270272050
## [1339] 0.0000010328346968 0.0000010449986868
## [1341] 0.0000010530093592 0.0000010591490740
## [1343] 0.0000010680390672 0.0000010743182154
## [1345] 0.0000010824385339 0.0000010861001658
## [1347] 0.0000010977069298 0.0000010993534831
## [1349] 0.0000011068019318 0.0000011203605944
## [1351] 0.0000011244592911 0.0000011322747046
## [1353] 0.0000011403710511 0.0000011490888221
## [1355] 0.0000011595995210 0.0000011631908913
## [1357] 0.0000011744347230 0.0000011776341413
## [1359] 0.0000011936157589 0.0000011949113175
## [1361] 0.0000012088335010 0.0000012184643306
## [1363] 0.0000012205128231 0.0000012305922950
## [1365] 0.0000012423700564 0.0000012492021068
## [1367] 0.0000012556438482 0.0000012634400586
## [1369] 0.0000012757100173 0.0000012808877532
## [1371] 0.0000012942764855 0.0000013055302922
## [1373] 0.0000013122214181 0.0000013233920634
## [1375] 0.0000013257580922 0.0000013340172520
## [1377] 0.0000013497078505 0.0000013555088603
## [1379] 0.0000013621480496 0.0000013717917600
## [1381] 0.0000013841049503 0.0000013954996063
## [1383] 0.0000013997906401 0.0000014124333449
## [1385] 0.0000014228260960 0.0000014336754742
## [1387] 0.0000014392133332 0.0000014525025424
## [1389] 0.0000014618938113 0.0000014706570373
## [1391] 0.0000014803046970 0.0000014985267576
## [1393] 0.0000015045558985 0.0000015157282562
## [1395] 0.0000015289402136 0.0000015311355474
## [1397] 0.0000015455664075 0.0000015557325232
## [1399] 0.0000015655586681 0.0000015756219347
## [1401] 0.0000015887523964 0.0000016055016298
## [1403] 0.0000016170139564 0.0000016242132912
## [1405] 0.0000016300833285 0.0000016450081810
## [1407] 0.0000016539111017 0.0000016703496194
## [1409] 0.0000016823272385 0.0000016920544457
## [1411] 0.0000017034379770 0.0000017112455040
## [1413] 0.0000017303215293 0.0000017434992544
## [1415] 0.0000017476910497 0.0000017586183054
## [1417] 0.0000017745231862 0.0000017827735022
## [1419] 0.0000018049232779 0.0000018094160886
## [1421] 0.0000018234054862 0.0000018325742619
## [1423] 0.0000018509479501 0.0000018696952151
## [1425] 0.0000018714698153 0.0000018850104739
## [1427] 0.0000019096159591 0.0000019113411987
## [1429] 0.0000019304156541 0.0000019367210301
## [1431] 0.0000019548201567 0.0000019730181933
## [1433] 0.0000019792827593 0.0000019985122100
## [1435] 0.0000020116811374 0.0000020231438253
## [1437] 0.0000020350984034 0.0000020556829636
## [1439] 0.0000020659837395 0.0000020796804096
## [1441] 0.0000020965425611 0.0000021111781691
## [1443] 0.0000021291211251 0.0000021447564005
## [1445] 0.0000021534756257 0.0000021734650673
## [1447] 0.0000021921531069 0.0000021943965888
## [1449] 0.0000022174068671 0.0000022308955133
## [1451] 0.0000022534927538 0.0000022569514599
## [1453] 0.0000022717066745 0.0000023003450166
## [1455] 0.0000023098894253 0.0000023184700105
## [1457] 0.0000023432449156 0.0000023592573841
## [1459] 0.0000023802328058 0.0000023906496751
## [1461] 0.0000023994327780 0.0000024214467614
## [1463] 0.0000024475765826 0.0000024605851447
## [1465] 0.0000024730871380 0.0000024898370773
## [1467] 0.0000025138906602 0.0000025268239572
## [1469] 0.0000025429673902 0.0000025612436699
## [1471] 0.0000025870219404 0.0000025963036002
## [1473] 0.0000026194059232 0.0000026267320777
## [1475] 0.0000026496142569 0.0000026782585202
## [1477] 0.0000026944923387 0.0000027090913256
## [1479] 0.0000027304923087 0.0000027384177880
## [1481] 0.0000027620743125 0.0000027843815606
## [1483] 0.0000028053431265 0.0000028311310752
## [1485] 0.0000028419865938 0.0000028514975178
## [1487] 0.0000028842171094 0.0000028950414425
## [1489] 0.0000029194895375 0.0000029325447699
## [1491] 0.0000029566660463 0.0000029903617290
## [1493] 0.0000030032148168 0.0000030171909586
## [1495] 0.0000030410989584 0.0000030598492171
## [1497] 0.0000030833874025 0.0000031004191627
## [1499] 0.0000031396893597 0.0000031552144127
## [1501] 0.0000031671140014 0.0000031994490894
## [1503] 0.0000032179186569 0.0000032314861025
## [1505] 0.0000032561054388 0.0000032821249315
## [1507] 0.0000033181960119 0.0000033404843880
## [1509] 0.0000033538094379 0.0000033830195898
## [1511] 0.0000033941591589 0.0000034254618833
## [1513] 0.0000034591666836 0.0000034736454346
## [1515] 0.0000034928923117 0.0000035176227453
## [1517] 0.0000035557004599 0.0000035804135924
## [1519] 0.0000035978490881 0.0000036249466980
## [1521] 0.0000036357952657 0.0000036676584144
## [1523] 0.0000036927693806 0.0000037297186906
## [1525] 0.0000037502286638 0.0000037616231993
## [1527] 0.0000038083825062 0.0000038189082531
## [1529] 0.0000038496662156 0.0000038658964331
## [1531] 0.0000039160640444 0.0000039399185552
## [1533] 0.0000039618044230 0.0000039785416680
## [1535] 0.0000040066153436 0.0000040375533121
## [1537] 0.0000040765568834 0.0000041084895500
## [1539] 0.0000041360560958 0.0000041423419003
## [1541] 0.0000041972833729 0.0000042177755596
## [1543] 0.0000042537284593 0.0000042759626683
## [1545] 0.0000043073585701 0.0000043219739227
## [1547] 0.0000043626674852 0.0000043784802912
## [1549] 0.0000044165509366 0.0000044459532045
## [1551] 0.0000044833951733 0.0000045126675717
## [1553] 0.0000045429836082 0.0000045676746394
## [1555] 0.0000046010121286 0.0000046303935069
## [1557] 0.0000046750980873 0.0000047196615158
## [1559] 0.0000047491330069 0.0000047840021604
## [1561] 0.0000048112089229 0.0000048390211919
## [1563] 0.0000048686325827 0.0000049100271264
## [1565] 0.0000049428338584 0.0000049882725583
## [1567] 0.0000049901026924 0.0000050320479216
## [1569] 0.0000050732031729 0.0000050972951792
## [1571] 0.0000051413887161 0.0000051766943041
## [1573] 0.0000052005746018 0.0000052506328318
## [1575] 0.0000052968883827 0.0000053238710070
## [1577] 0.0000053502867734 0.0000053889434926
## [1579] 0.0000054391185266 0.0000054809756881
## [1581] 0.0000055048370505 0.0000055539033557
## [1583] 0.0000055734953591 0.0000056487540580
## [1585] 0.0000056712261801 0.0000057146240745
## [1587] 0.0000057553647010 0.0000057731297879
## [1589] 0.0000058095374068 0.0000058746552948
## [1591] 0.0000058896831232 0.0000059294442956
## [1593] 0.0000059995520297 0.0000060165769583
## [1595] 0.0000060573297163 0.0000061285402692
## [1597] 0.0000061490220967 0.0000062065618080
## [1599] 0.0000062351714828 0.0000062755093278
## [1601] 0.0000063530528401 0.0000063651847748
## [1603] 0.0000064165067111 0.0000064775031876
## [1605] 0.0000065154362015 0.0000065706647267
## [1607] 0.0000065975339195 0.0000066376734913
## [1609] 0.0000067054148937 0.0000067594500514
## [1611] 0.0000068055170889 0.0000068402084391
## [1613] 0.0000068575417447 0.0000069191367985
## [1615] 0.0000069568822099 0.0000070152323435
## [1617] 0.0000070866675150 0.0000071170433788
## [1619] 0.0000071702394084 0.0000072159785866
## [1621] 0.0000072871175661 0.0000073259346648
## [1623] 0.0000073676756669 0.0000074112077746
## [1625] 0.0000074473250155 0.0000075351396110
## [1627] 0.0000075865652134 0.0000076445409673
## [1629] 0.0000077000271243 0.0000077204535015
## [1631] 0.0000077969841322 0.0000078415004803
## [1633] 0.0000079240893994 0.0000079702723172
## [1635] 0.0000080210306610 0.0000080843745896
## [1637] 0.0000081288982570 0.0000081484330588
## [1639] 0.0000082493290883 0.0000083054348741
## [1641] 0.0000083262782406 0.0000084141260878
## [1643] 0.0000084373911014 0.0000085032119486
## [1645] 0.0000085575388446 0.0000086284597591
## [1647] 0.0000087196981976 0.0000087611373674
## [1649] 0.0000088216868722 0.0000088936770722
## [1651] 0.0000089430271357 0.0000090327113824
## [1653] 0.0000090686648371 0.0000091370235452
## [1655] 0.0000091724404016 0.0000092604780564
## [1657] 0.0000093257797088 0.0000094064752873
## [1659] 0.0000094322144323 0.0000094846927028
## [1661] 0.0000095622385267 0.0000096518734418
## [1663] 0.0000096903545930 0.0000097579319672
## [1665] 0.0000098640338717 0.0000099357550852
## [1667] 0.0000100099227412 0.0000100368660832
## [1669] 0.0000101108170270 0.0000102315945508
## [1671] 0.0000102948934513 0.0000103692712830
## [1673] 0.0000103874837259 0.0000105028392779
## [1675] 0.0000105244581640 0.0000106122653406
## [1677] 0.0000106850369887 0.0000108019635008
## [1679] 0.0000108834735178 0.0000109181497863
## [1681] 0.0000109711117609 0.0000110873239226
## [1683] 0.0000111869504686 0.0000111951941430
## [1685] 0.0000112909339357 0.0000113819853352
## [1687] 0.0000114824859079 0.0000115485151484
## [1689] 0.0000116656543471 0.0000116767329889
## [1691] 0.0000117527600933 0.0000118612022844
## [1693] 0.0000119322406101 0.0000120072534446
## [1695] 0.0000121321953282 0.0000122061820077
## [1697] 0.0000123302171453 0.0000124120298969
## [1699] 0.0000124542668219 0.0000125848236530
## [1701] 0.0000126475648537 0.0000127428746086
## [1703] 0.0000128036162136 0.0000128731750543
## [1705] 0.0000130239331336 0.0000130772862398
## [1707] 0.0000131408576757 0.0000132491919871
## [1709] 0.0000133894186784 0.0000134837576973
## [1711] 0.0000135829995603 0.0000136422504154
## [1713] 0.0000137630542539 0.0000138479794606
## [1715] 0.0000139012802250 0.0000139891929082
## [1717] 0.0000141298446831 0.0000142415760396
## [1719] 0.0000143247702593 0.0000143806834814
## [1721] 0.0000145314657569 0.0000145585459680
## [1723] 0.0000146602077875 0.0000147998395495
## [1725] 0.0000149605238283 0.0000149961300816
## [1727] 0.0000151137266283 0.0000152158728166
## [1729] 0.0000153733294923 0.0000154554693630
## [1731] 0.0000155642257750 0.0000156329301719
## [1733] 0.0000157221736859 0.0000158611909228
## [1735] 0.0000159241997863 0.0000160694195651
## [1737] 0.0000161828623029 0.0000163258848530
## [1739] 0.0000164584823445 0.0000165268831440
## [1741] 0.0000166270404938 0.0000167639701228
## [1743] 0.0000168816586840 0.0000170605042599
## [1745] 0.0000170785443365 0.0000172168741055
## [1747] 0.0000173459269006 0.0000174656303673
## [1749] 0.0000176250762272 0.0000177308367362
## [1751] 0.0000178784257979 0.0000179996833019
## [1753] 0.0000181115972681 0.0000182049533334
## [1755] 0.0000183254915200 0.0000184357169021
## [1757] 0.0000185719142693 0.0000187720971476
## [1759] 0.0000187983655579 0.0000190110259025
## [1761] 0.0000191236412899 0.0000192432759530
## [1763] 0.0000193851152286 0.0000195061916814
## [1765] 0.0000196429052195 0.0000197355495490
## [1767] 0.0000198623671415 0.0000200479862020
## [1769] 0.0000202027387964 0.0000202950427801
## [1771] 0.0000204542807417 0.0000206479097659
## [1773] 0.0000207386263695 0.0000208619935869
## [1775] 0.0000210768590087 0.0000211719058241
## [1777] 0.0000213295567652 0.0000215529764195
## [1779] 0.0000216329236341 0.0000217586544012
## [1781] 0.0000219459073652 0.0000220847092661
## [1783] 0.0000222065348772 0.0000224322056696
## [1785] 0.0000225144435108 0.0000226997800143
## [1787] 0.0000228336834966 0.0000231043082533
## [1789] 0.0000232511304798 0.0000233539508761
## [1791] 0.0000235347121212 0.0000236951129217
## [1793] 0.0000238450874080 0.0000240076628468
## [1795] 0.0000241194056828 0.0000242869304569
## [1797] 0.0000245345650242 0.0000247242150896
## [1799] 0.0000249070957217 0.0000249966175711
## [1801] 0.0000252837810829 0.0000254131399708
## [1803] 0.0000254874341160 0.0000258065693646
## [1805] 0.0000259156856270 0.0000260406502331
## [1807] 0.0000263567011489 0.0000265291875721
## [1809] 0.0000266086472678 0.0000268621654609
## [1811] 0.0000269279556763 0.0000272247499679
## [1813] 0.0000274356136243 0.0000275707779772
## [1815] 0.0000278594088897 0.0000279749214604
## [1817] 0.0000280960835733 0.0000283050119871
## [1819] 0.0000285953674038 0.0000286724915415
## [1821] 0.0000288782192629 0.0000290764784819
## [1823] 0.0000294368740605 0.0000296356832337
## [1825] 0.0000297467940761 0.0000300465713368
## [1827] 0.0000301971114288 0.0000303890982273
## [1829] 0.0000305366099922 0.0000307374792423
## [1831] 0.0000310188391548 0.0000313285493250
## [1833] 0.0000313620828955 0.0000317126954208
## [1835] 0.0000318120730855 0.0000321207769097
## [1837] 0.0000323137460339 0.0000324980806474
## [1839] 0.0000328092397164 0.0000331073430741
## [1841] 0.0000331899756459 0.0000335512766760
## [1843] 0.0000336126151021 0.0000338602745558
## [1845] 0.0000342328044013 0.0000345141588443
## [1847] 0.0000346282874767 0.0000349586707278
## [1849] 0.0000351416864513 0.0000352988534046
## [1851] 0.0000356843364829 0.0000357786607999
## [1853] 0.0000360405585591 0.0000364403863808
## [1855] 0.0000365172655956 0.0000368838465126
## [1857] 0.0000372101743827 0.0000374874754999
## [1859] 0.0000377554096140 0.0000378532291949
## [1861] 0.0000382647679920 0.0000383564398625
## [1863] 0.0000385979212177 0.0000388473380325
## [1865] 0.0000391285454021 0.0000394363832582
## [1867] 0.0000398828962522 0.0000401311199555
## [1869] 0.0000404369504243 0.0000406803928047
## [1871] 0.0000410090678542 0.0000412918219751
## [1873] 0.0000413702800505 0.0000417899533374
## [1875] 0.0000418998698238 0.0000422751494453
## [1877] 0.0000427083126109 0.0000429344605278
## [1879] 0.0000431829985526 0.0000434925772204
## [1881] 0.0000438040153571 0.0000439572564909
## [1883] 0.0000443170754508 0.0000446936376173
## [1885] 0.0000450065008866 0.0000454696766564
## [1887] 0.0000457920315643 0.0000459131754679
## [1889] 0.0000463455042018 0.0000465620892418
## [1891] 0.0000468584107136 0.0000472541652931
## [1893] 0.0000474825618128 0.0000479164092421
## [1895] 0.0000484102283391 0.0000487243442197
## [1897] 0.0000489588441844 0.0000491387063239
## [1899] 0.0000496749874168 0.0000500645961080
## [1901] 0.0000504193195674 0.0000504744222082
## [1903] 0.0000509006571800 0.0000512189479201
## [1905] 0.0000518600451373 0.0000522234694014
## [1907] 0.0000523076974778 0.0000526632245917
## [1909] 0.0000530634437910 0.0000536362742603
## [1911] 0.0000540442102692 0.0000543125302946
## [1913] 0.0000544930040837 0.0000549828739140
## [1915] 0.0000554081352777 0.0000558948158815
## [1917] 0.0000561711929917 0.0000566220012830
## [1919] 0.0000568577776257 0.0000571881853409
## [1921] 0.0000577962272603 0.0000582519429699
## [1923] 0.0000586233882585 0.0000587910766309
## [1925] 0.0000593586193729 0.0000596300471862
## [1927] 0.0000603104378334 0.0000606910177356
## [1929] 0.0000611894967614 0.0000614480794771
## [1931] 0.0000618073757511 0.0000621104562214
## [1933] 0.0000629006514927 0.0000632725181972
## [1935] 0.0000636350403347 0.0000639747496307
## [1937] 0.0000643570282629 0.0000650423137444
## [1939] 0.0000652101895024 0.0000660423120446
## [1941] 0.0000664279973674 0.0000669188994489
## [1943] 0.0000674331120861 0.0000677673178377
## [1945] 0.0000681236973060 0.0000686407729594
## [1947] 0.0000689764056850 0.0000698201144555
## [1949] 0.0000702422654374 0.0000704742041120
## [1951] 0.0000711427377387 0.0000715455425352
## [1953] 0.0000720446375343 0.0000723451812393
## [1955] 0.0000731796098990 0.0000733210687431
## [1957] 0.0000738222422892 0.0000745017006427
## [1959] 0.0000750720105260 0.0000758068712922
## [1961] 0.0000760059816795 0.0000766978666170
## [1963] 0.0000769842106741 0.0000774562506999
## [1965] 0.0000780232544344 0.0000788139532735
## [1967] 0.0000795988096381 0.0000799572356941
## [1969] 0.0000805132873534 0.0000810715179532
## [1971] 0.0000818450078157 0.0000820060342501
## [1973] 0.0000826704043721 0.0000831518729003
## [1975] 0.0000835958906474 0.0000843260977986
## [1977] 0.0000851075716740 0.0000855648615624
## [1979] 0.0000860713322575 0.0000869962938378
## [1981] 0.0000875949621169 0.0000878537687871
## [1983] 0.0000886260907812 0.0000893803811107
## [1985] 0.0000898811396121 0.0000905883963363
## [1987] 0.0000912397510794 0.0000916676489766
## [1989] 0.0000920977883619 0.0000930721605218
## [1991] 0.0000939567892871 0.0000945354335284
## [1993] 0.0000951645969842 0.0000954514574423
## [1995] 0.0000961282244345 0.0000970466518414
## [1997] 0.0000978316255759 0.0000983806009917
## [1999] 0.0000989576180424 0.0000994542663634
## [2001] 0.0001000095213370 0.0001012845900470
## [2003] 0.0001014784336300 0.0001022867578086
## [2005] 0.0001029934556976 0.0001041476505228
## [2007] 0.0001049076520853 0.0001056699491747
## [2009] 0.0001058143997153 0.0001065767403144
## [2011] 0.0001074835348715 0.0001081511698932
## [2013] 0.0001089227832399 0.0001097893552086
## [2015] 0.0001105355063269 0.0001110434540443
## [2017] 0.0001124449275147 0.0001129917654657
## [2019] 0.0001134080851685 0.0001145499927227
## [2021] 0.0001151342925153 0.0001162190000735
## [2023] 0.0001166076085444 0.0001178021821070
## [2025] 0.0001183496263296 0.0001188840782276
## [2027] 0.0001201346048204 0.0001212568871007
## [2029] 0.0001221260689993 0.0001225715131084
## [2031] 0.0001236776536585 0.0001244478842242
## [2033] 0.0001248909903427 0.0001258650223248
## [2035] 0.0001272853500443 0.0001278755573177
## [2037] 0.0001283089482132 0.0001292591033642
## [2039] 0.0001302786999104 0.0001311356664129
## [2041] 0.0001326287150825 0.0001332548086903
## [2043] 0.0001338253036515 0.0001353555304594
## [2045] 0.0001355819901992 0.0001372197689758
## [2047] 0.0001376882753868 0.0001388059220277
## [2049] 0.0001399940802847 0.0001404504008710
## [2051] 0.0001418244062890 0.0001429855974673
## [2053] 0.0001440174951944 0.0001446512486298
## [2055] 0.0001460342473049 0.0001467845307698
## [2057] 0.0001473197261132 0.0001492091832143
## [2059] 0.0001495412242817 0.0001508818370882
## [2061] 0.0001522115825439 0.0001529655177506
## [2063] 0.0001544000822474 0.0001547167378480
## [2065] 0.0001558276946921 0.0001572461214097
## [2067] 0.0001584719203128 0.0001589571540819
## [2069] 0.0001606874657211 0.0001617926851783
## [2071] 0.0001623351775205 0.0001634726455878
## [2073] 0.0001650963075787 0.0001664369517245
## [2075] 0.0001671906985913 0.0001689673302740
## [2077] 0.0001696451315319 0.0001713163613233
## [2079] 0.0001719177430323 0.0001735552785623
## [2081] 0.0001738641159106 0.0001756094192975
## [2083] 0.0001769423398825 0.0001783827217211
## [2085] 0.0001788904849274 0.0001803904914806
## [2087] 0.0001821770299516 0.0001836435052622
## [2089] 0.0001839150638081 0.0001858562267136
## [2091] 0.0001863387455459 0.0001883984009745
## [2093] 0.0001893209631983 0.0001913147390422
## [2095] 0.0001927333359854 0.0001939997176140
## [2097] 0.0001944409487484 0.0001960049625491
## [2099] 0.0001976521773683 0.0001982620458598
## [2101] 0.0001999107717514 0.0002013909780717
## [2103] 0.0002025114349074 0.0002044843443154
## [2105] 0.0002056693610802 0.0002071902996853
## [2107] 0.0002093667011257 0.0002099510307277
## [2109] 0.0002110851032874 0.0002126734743502
## [2111] 0.0002144123234928 0.0002164439926407
## [2113] 0.0002175003777435 0.0002197339104503
## [2115] 0.0002209864650082 0.0002218079359736
## [2117] 0.0002230595635136 0.0002247154522719
## [2119] 0.0002273556005330 0.0002277488323079
## [2121] 0.0002293284855769 0.0002322428127485
## [2123] 0.0002326335625945 0.0002340914541085
## [2125] 0.0002365164727766 0.0002387073164478
## [2127] 0.0002399760290286 0.0002407308413792
## [2129] 0.0002430745226706 0.0002447850476664
## [2131] 0.0002455745746763 0.0002486288597324
## [2133] 0.0002494475334776 0.0002513160465729
## [2135] 0.0002536750004288 0.0002551158832362
## [2137] 0.0002563262126866 0.0002582171880480
## [2139] 0.0002597861278604 0.0002622912584321
## [2141] 0.0002640542719134 0.0002655200872366
## [2143] 0.0002684013859058 0.0002687731204028
## [2145] 0.0002707976006072 0.0002740764344431
## [2147] 0.0002746255673902 0.0002765832295951
## [2149] 0.0002782878149274 0.0002807391596762
## [2151] 0.0002818942024650 0.0002838029730394
## [2153] 0.0002862129904407 0.0002884773916470
## [2155] 0.0002899757585958 0.0002935489643072
## [2157] 0.0002949925104430 0.0002974824591062
## [2159] 0.0002991257373906 0.0003003760310268
## [2161] 0.0003025184037751 0.0003043260328037
## [2163] 0.0003069977752458 0.0003102386543376
## [2165] 0.0003123603627353 0.0003142499090450
## [2167] 0.0003158449389070 0.0003188533587021
## [2169] 0.0003206943958179 0.0003234758609814
## [2171] 0.0003253756159516 0.0003272635572348
## [2173] 0.0003298649036963 0.0003317107984023
## [2175] 0.0003330816894990 0.0003367844189880
## [2177] 0.0003392921345434 0.0003417792619179
## [2179] 0.0003419865268279 0.0003458085151587
## [2181] 0.0003467388311907 0.0003510421497840
## [2183] 0.0003529507123482 0.0003547117831314
## [2185] 0.0003567690292505 0.0003598813378831
## [2187] 0.0003633460797440 0.0003640142114481
## [2189] 0.0003683049034251 0.0003706105396737
## [2191] 0.0003726791997081 0.0003755703157336
## [2193] 0.0003789675764742 0.0003795141126594
## [2195] 0.0003842927260044 0.0003871290240013
## [2197] 0.0003873974614929 0.0003908651542092
## [2199] 0.0003944104564203 0.0003954679302046
## [2201] 0.0003999125606375 0.0004031181318081
## [2203] 0.0004044882401176 0.0004077279590702
## [2205] 0.0004096462176729 0.0004140472747751
## [2207] 0.0004177996662621 0.0004188090275683
## [2209] 0.0004225199256676 0.0004263718127968
## [2211] 0.0004276954487364 0.0004318675160526
## [2213] 0.0004335083965350 0.0004374756212203
## [2215] 0.0004405728026211 0.0004441466827329
## [2217] 0.0004458416437651 0.0004477660612126
## [2219] 0.0004518421914992 0.0004545384990814
## [2221] 0.0004586057851647 0.0004615987924044
## [2223] 0.0004647774139050 0.0004698518346925
## [2225] 0.0004710586688113 0.0004763894429484
## [2227] 0.0004797091157098 0.0004807835245344
## [2229] 0.0004851036620368 0.0004865612786157
## [2231] 0.0004898562323927 0.0004935672216965
## [2233] 0.0004998476633415 0.0005008442955632
## [2235] 0.0005062808117920 0.0005100505444500
## [2237] 0.0005128901188107 0.0005141238876522
## [2239] 0.0005199446616482 0.0005236103419478
## [2241] 0.0005249731737837 0.0005285310012989
## [2243] 0.0005339395758125 0.0005383475931154
## [2245] 0.0005416820401129 0.0005434296674863
## [2247] 0.0005501793731489 0.0005509657069908
## [2249] 0.0005547004416021 0.0005590578783994
## [2251] 0.0005626868010242 0.0005691997390986
## [2253] 0.0005711454154336 0.0005779167532304
## [2255] 0.0005801554417609 0.0005822455088226
## [2257] 0.0005892169895808 0.0005912212197614
## [2259] 0.0005954019655164 0.0006004052519446
## [2261] 0.0006052421349066 0.0006073364738672
## [2263] 0.0006125453782645 0.0006162028445506
## [2265] 0.0006208291837459 0.0006248636267735
## [2267] 0.0006296219575712 0.0006342583211329
## [2269] 0.0006408584419261 0.0006418386623439
## [2271] 0.0006499349253924 0.0006507153792593
## [2273] 0.0006554107429997 0.0006603784926659
## [2275] 0.0006669048514045 0.0006684230402938
## [2277] 0.0006734460787900 0.0006781075992242
## [2279] 0.0006832701946856 0.0006879476996591
## [2281] 0.0006959901756046 0.0007006115982660
## [2283] 0.0007062379964523 0.0007105341892460
## [2285] 0.0007135033787019 0.0007191556256722
## [2287] 0.0007260623331316 0.0007304754436726
## [2289] 0.0007348808793005 0.0007377602613133
## [2291] 0.0007455024396313 0.0007486369517505
## [2293] 0.0007548157325379 0.0007614236799782
## [2295] 0.0007668436834646 0.0007680995894410
## [2297] 0.0007731219913457 0.0007789268315391
## [2299] 0.0007861076854647 0.0007931102438740
## [2301] 0.0007975475863435 0.0008047740770902
## [2303] 0.0008101211147686 0.0008155907745509
## [2305] 0.0008189466374611 0.0008231986472409
## [2307] 0.0008288625291555 0.0008383981475022
## [2309] 0.0008396526094477 0.0008488871535693
## [2311] 0.0008546664123358 0.0008587323306101
## [2313] 0.0008684038503956 0.0008732927706713
## [2315] 0.0008752231550647 0.0008818073182167
## [2317] 0.0008903337352451 0.0008978123493120
## [2319] 0.0009014216363555 0.0009092955089433
## [2321] 0.0009122372658588 0.0009196068429670
## [2323] 0.0009249736281399 0.0009311804585188
## [2325] 0.0009383776898921 0.0009489672195210
## [2327] 0.0009534750376136 0.0009629455595382
## [2329] 0.0009704672269030 0.0009746448826106
## [2331] 0.0009789356259190 0.0009865379461475
## [2333] 0.0009920106680993 0.0010019311342350
## [2335] 0.0010070224282469 0.0010133025167351
## [2337] 0.0010200877240686 0.0010317546851451
## [2339] 0.0010381294553024 0.0010455928184252
## [2341] 0.0010505750842924 0.0010584681473948
## [2343] 0.0010661656382351 0.0010721139099353
## [2345] 0.0010827405736444 0.0010866173220387
## [2347] 0.0010957611768139 0.0011049785465995
## [2349] 0.0011108667595596 0.0011156127963484
## [2351] 0.0011264320888940 0.0011309110137794
## [2353] 0.0011381164697660 0.0011530485852093
## [2355] 0.0011595349395199 0.0011626563279145
## [2357] 0.0011760116650919 0.0011826762495979
## [2359] 0.0011925353779939 0.0011975468622878
## [2361] 0.0012029162337837 0.0012117570995692
## [2363] 0.0012232438627205 0.0012290459892798
## [2365] 0.0012389310133747 0.0012468532623927
## [2367] 0.0012607982413880 0.0012673740360998
## [2369] 0.0012723415382227 0.0012798938910840
## [2371] 0.0012938941989488 0.0013061429758806
## [2373] 0.0013150562940431 0.0013174282499449
## [2375] 0.0013282879072083 0.0013352134035512
## [2377] 0.0013432807101442 0.0013578300642745
## [2379] 0.0013687141317359 0.0013767192805953
## [2381] 0.0013881919857566 0.0013994144786082
## [2383] 0.0014055032103549 0.0014110458155700
## [2385] 0.0014218188404541 0.0014343519111902
## [2387] 0.0014475995084611 0.0014586473517851
## [2389] 0.0014617465267404 0.0014771478116960
## [2391] 0.0014826638876900 0.0014945852479616
## [2393] 0.0015015990474017 0.0015166489453663
## [2395] 0.0015222487066042 0.0015407106318134
## [2397] 0.0015506397048378 0.0015557592718326
## [2399] 0.0015715895474431 0.0015834930270882
## [2401] 0.0015849099738554 0.0015990361272551
## [2403] 0.0016073496574335 0.0016248775974045
## [2405] 0.0016380143800998 0.0016461069792089
## [2407] 0.0016532835397900 0.0016693222406258
## [2409] 0.0016798549104481 0.0016876622949892
## [2411] 0.0017069825494711 0.0017184497517352
## [2413] 0.0017252594117437 0.0017391519994879
## [2415] 0.0017558585338932 0.0017589471959443
## [2417] 0.0017782586099363 0.0017868388290766
## [2419] 0.0017974231749292 0.0018179621267683
## [2421] 0.0018272520673345 0.0018389670199168
## [2423] 0.0018473211654395 0.0018701087634126
## [2425] 0.0018754881532998 0.0018937718795388
## [2427] 0.0018999696486968 0.0019128554460841
## [2429] 0.0019270099607776 0.0019479875488449
## [2431] 0.0019516477921318 0.0019634073067720
## [2433] 0.0019825113587213 0.0020008604511357
## [2435] 0.0020182839532188 0.0020249103686042
## [2437] 0.0020417207579129 0.0020537304087494
## [2439] 0.0020702825701823 0.0020890819100719
## [2441] 0.0020894680604148 0.0021160670782401
## [2443] 0.0021236464930987 0.0021391895269128
## [2445] 0.0021570033889826 0.0021732965726774
## [2447] 0.0021812608200847 0.0021975911178065
## [2449] 0.0022162300748098 0.0022355694277485
## [2451] 0.0022453308186913 0.0022565698881318
## [2453] 0.0022730816071121 0.0022911099608319
## [2455] 0.0023095115769939 0.0023317515823191
## [2457] 0.0023456766133098 0.0023614338177089
## [2459] 0.0023721736813412 0.0023843804103150
## [2461] 0.0024130086977124 0.0024242145620490
## [2463] 0.0024477144880317 0.0024517856438489
## [2465] 0.0024737415105293 0.0024892516261443
## [2467] 0.0025041565261524 0.0025298284664628
## [2469] 0.0025388134839222 0.0025588797043240
## [2471] 0.0025799143846052 0.0026013688686472
## [2473] 0.0026181069810845 0.0026405529302048
## [2475] 0.0026519596878624 0.0026745121152625
## [2477] 0.0026869214231765 0.0027069519786978
## [2479] 0.0027189837280535 0.0027537676614595
## [2481] 0.0027542870755708 0.0027812921390002
## [2483] 0.0027969456662015 0.0028129741216680
## [2485] 0.0028471546226217 0.0028683683973229
## [2487] 0.0028822081736031 0.0029099400121701
## [2489] 0.0029123483712333 0.0029460326324740
## [2491] 0.0029676332239434 0.0029743582304480
## [2493] 0.0030099876390907 0.0030322258510717
## [2495] 0.0030469435996947 0.0030747986923962
## [2497] 0.0030831008456248 0.0031121415695849
## [2499] 0.0031310781322550 0.0031571075482515
## [2501] 0.0031689974617702 0.0031963206655335
## [2503] 0.0032171506121569 0.0032325436703330
## [2505] 0.0032618103065773 0.0032929455634006
## [2507] 0.0033154070599695 0.0033391654355902
## [2509] 0.0033590860806782 0.0033874408758485
## [2511] 0.0033900520918764 0.0034336942624240
## [2513] 0.0034579220349616 0.0034682649747821
## [2515] 0.0034878242055448 0.0035236723921697
## [2517] 0.0035439333404568 0.0035654511130086
## [2519] 0.0035864483970013 0.0036203555912952
## [2521] 0.0036310987766853 0.0036793906851250
## [2523] 0.0036834228103807 0.0037098466373879
## [2525] 0.0037547958982267 0.0037721708783559
## [2527] 0.0037931011006147 0.0038353739183307
## [2529] 0.0038536878355911 0.0038739696938328
## [2531] 0.0039087632736585 0.0039421976433201
## [2533] 0.0039570420865094 0.0039892183027045
## [2535] 0.0040189009378485 0.0040434958006110
## [2537] 0.0040676190167871 0.0040936441696772
## [2539] 0.0041286580003043 0.0041653730895446
## [2541] 0.0041772911586078 0.0042220949148391
## [2543] 0.0042437564369295 0.0042641036880978
## [2545] 0.0043087508641616 0.0043158878940688
## [2547] 0.0043516720439298 0.0043800295458333
## [2549] 0.0044072656730174 0.0044524006173174
## [2551] 0.0044801105194418 0.0045097875308406
## [2553] 0.0045529366652809 0.0045787733804143
## [2555] 0.0046077415582888 0.0046485562918867
## [2557] 0.0046705135713669 0.0047084607208109
## [2559] 0.0047498289831482 0.0047708452495665
## [2561] 0.0047996210442970 0.0048518448756346
## [2563] 0.0048595859565286 0.0048967536197185
## [2565] 0.0049517505437246 0.0049635291783555
## [2567] 0.0049990513708705 0.0050446585671815
## [2569] 0.0050831569151932 0.0051145440439407
## [2571] 0.0051533656456393 0.0051906765550906
## [2573] 0.0052245986462528 0.0052411162805962
## [2575] 0.0052953891969044 0.0053286193440728
## [2577] 0.0053784782235758 0.0053861105246711
## [2579] 0.0054556533348381 0.0054823416854762
## [2581] 0.0055263126726394 0.0055623331015298
## [2583] 0.0055994021878603 0.0056452175426889
## [2585] 0.0056586287843876 0.0056895105766719
## [2587] 0.0057594038593206 0.0058074847927954
## [2589] 0.0058310114200434 0.0058571527473189
## [2591] 0.0059128427262315 0.0059547610446114
## [2593] 0.0059832501920464 0.0060188130906599
## [2595] 0.0060734314179864 0.0060976024087820
## [2597] 0.0061435360957459 0.0061818851461541
## [2599] 0.0062298361919496 0.0062996635657228
## [2601] 0.0063434292113226 0.0063553528668523
## [2603] 0.0064144326096832 0.0064502482951910
## [2605] 0.0065029259473700 0.0065688237813453
## [2607] 0.0066052195174855 0.0066305334899453
## [2609] 0.0066785314989440 0.0067190522310370
## [2611] 0.0068045492218020 0.0068395285999485
## [2613] 0.0068977968539552 0.0069048004364709
## [2615] 0.0069978075331976 0.0070146992862511
## [2617] 0.0070947699299209 0.0071429586043974
## [2619] 0.0071870770143110 0.0072412280794704
## [2621] 0.0072540084171687 0.0073347167903043
## [2623] 0.0073891913445490 0.0074268461043423
## [2625] 0.0074539396048533 0.0075347932912656
## [2627] 0.0075877838739714 0.0076143703907539
## [2629] 0.0076687293915982 0.0077548333840360
## [2631] 0.0078104030006091 0.0078439821134220
## [2633] 0.0078840501404379 0.0079285243319833
## [2635] 0.0080213428215594 0.0080406737443885
## [2637] 0.0081200490251396 0.0081850744412395
## [2639] 0.0082495344492450 0.0082732623453705
## [2641] 0.0083481036194546 0.0084041951699627
## [2643] 0.0084715397624118 0.0084985679273356
## [2645] 0.0086052758434812 0.0086175389824049
## [2647] 0.0086708443607258 0.0087628075123075
## [2649] 0.0088213455879548 0.0088642281508764
## [2651] 0.0089385389818641 0.0090358270416354
## [2653] 0.0090414575453536 0.0091515575764083
## [2655] 0.0092136426756035 0.0092562925988394
## [2657] 0.0093512821452391 0.0093649650416404
## [2659] 0.0094758365791768 0.0095479018569252
## [2661] 0.0095707219623846 0.0096176891855853
## [2663] 0.0097291110708509 0.0098016512519164
## [2665] 0.0098480855727102 0.0098952985861702
## [2667] 0.0099953709530137 0.0100796138451235
## [2669] 0.0101588444248226 0.0101949858336313
## [2671] 0.0102336292666985 0.0103192607767334
## [2673] 0.0104329925748082 0.0104921279561438
## [2675] 0.0105704610627361 0.0106038161795000
## [2677] 0.0106824035363443 0.0107567250743972
## [2679] 0.0108520296632428 0.0109513751134313
## [2681] 0.0109955388772301 0.0110514678690251
## [2683] 0.0111354707178757 0.0112280254764249
## [2685] 0.0113168649825169 0.0114046747097134
## [2687] 0.0114688874736672 0.0115563951771506
## [2689] 0.0116379879392189 0.0117302989891067
## [2691] 0.0118210251071852 0.0118693872130753
## [2693] 0.0119414228051547 0.0120393474207929
## [2695] 0.0120795947685612 0.0121699809785562
## [2697] 0.0122600625565185 0.0123444643010790
## [2699] 0.0125017813319704 0.0125557372079100
## [2701] 0.0126581404953665 0.0127433917242551
## [2703] 0.0128171751854285 0.0128780812736144
## [2705] 0.0130208151535801 0.0130415989017687
## [2707] 0.0131988390176270 0.0132989116110071
## [2709] 0.0133499595907250 0.0134263978697318
## [2711] 0.0135774467290802 0.0136314427183348
## [2713] 0.0137713934417063 0.0137907501008384
## [2715] 0.0139518557539015 0.0140141504406500
## [2717] 0.0141574954782476 0.0142044779424874
## [2719] 0.0142767132812002 0.0144047527961205
## [2721] 0.0145270357006815 0.0146070987097806
## [2723] 0.0147223786742563 0.0147934569325555
## [2725] 0.0149570398647108 0.0150202153777071
## [2727] 0.0151652973262498 0.0152488310326844
## [2729] 0.0153764924457665 0.0154054272865397
## [2731] 0.0155761820701071 0.0156967424078435
## [2733] 0.0157629351809823 0.0158792304193556
## [2735] 0.0159879399086913 0.0160490037422852
## [2737] 0.0161832475456197 0.0162667823528996
## [2739] 0.0164474443372589 0.0164997972913970
## [2741] 0.0166127816223652 0.0168077761535880
## [2743] 0.0168895052015288 0.0169541575266798
## [2745] 0.0171270008395147 0.0172805840018739
## [2747] 0.0173663816300391 0.0175357012689333
## [2749] 0.0175449357108041 0.0177340269288143
## [2751] 0.0178709260367600 0.0179207187580778
## [2753] 0.0181443868020146 0.0182299122425733
## [2755] 0.0183905401549078 0.0185252756261412
## [2757] 0.0186078873600662 0.0186866769354766
## [2759] 0.0189121915400330 0.0189958670213379
## [2761] 0.0191086726530158 0.0192251583552893
## [2763] 0.0193280175763627 0.0195577258349261
## [2765] 0.0196956591069541 0.0198576996279538
## [2767] 0.0199372869428529 0.0200425929987754
## [2769] 0.0201929693525944 0.0203126733080283
## [2771] 0.0205477496853392 0.0205837265245349
## [2773] 0.0207072244296820 0.0209075970238145
## [2775] 0.0210470210220641 0.0212601524641258
## [2777] 0.0213772203493786 0.0214398104415445
## [2779] 0.0216554097268924 0.0218035385571137
## [2781] 0.0220276688481856 0.0220754510041383
## [2783] 0.0223221316078052 0.0224441167036630
## [2785] 0.0225240367179469 0.0227486205835481
## [2787] 0.0228895588157658 0.0230018084086757
## [2789] 0.0231321112489759 0.0233460446506322
## [2791] 0.0235876008935284 0.0236527643163391
## [2793] 0.0238198870483242 0.0239412603681800
## [2795] 0.0241143300386791 0.0243955619601570
## [2797] 0.0244696679698304 0.0247219230860790
## [2799] 0.0247947830791493 0.0250046825938914
## [2801] 0.0251771226873007 0.0254089660134140
## [2803] 0.0255543369429094 0.0258040105774170
## [2805] 0.0259411459267530 0.0261504178885988
## [2807] 0.0262673529706736 0.0265212936117591
## [2809] 0.0267269188398365 0.0268526679531941
## [2811] 0.0269425180169176 0.0271726757384120
## [2813] 0.0273544944747952 0.0275910950228823
## [2815] 0.0278053940164229 0.0279261395363249
## [2817] 0.0280796682609666 0.0283600257232624
## [2819] 0.0285517932678256 0.0287378231018993
## [2821] 0.0289054571910659 0.0291427862429871
## [2823] 0.0293219840441997 0.0296355852743563
## [2825] 0.0297363581073951 0.0299051459902397
## [2827] 0.0301299063728341 0.0303236353327946
## [2829] 0.0304828644394498 0.0308352060489911
## [2831] 0.0310298438963459 0.0313062233167581
## [2833] 0.0313531949918650 0.0317614740692237
## [2835] 0.0319156501905865 0.0320700468279433
## [2837] 0.0323257889269791 0.0326226810606084
## [2839] 0.0327514839081434 0.0330301607186866
## [2841] 0.0333300402340952 0.0333648302905679
## [2843] 0.0336490723435793 0.0338892541461575
## [2845] 0.0341602809726382 0.0343098057209711
## [2847] 0.0345835405579228 0.0348290957990861
## [2849] 0.0349967906628475 0.0354457509590115
## [2851] 0.0357013250962964 0.0357394275537877
## [2853] 0.0361515373630166 0.0364096067934135
## [2855] 0.0366118374612288 0.0368357413479370
## [2857] 0.0371131606147412 0.0373712521018001
## [2859] 0.0375380228120807 0.0379436455127064
## [2861] 0.0381973460065844 0.0383668975001057
## [2863] 0.0385735519914388 0.0389259303483152
## [2865] 0.0390955354855345 0.0395230104922489
## [2867] 0.0397884554491592 0.0399386682315595
## [2869] 0.0402125568722912 0.0405383114660221
## [2871] 0.0408001232158259 0.0410568380142756
## [2873] 0.0415439656007119 0.0418448584810924
## [2875] 0.0421223642780368 0.0424293080001344
## [2877] 0.0426393117015187 0.0430493138448321
## [2879] 0.0433081121358519 0.0433652020360853
## [2881] 0.0439404201243622 0.0441146283599082
## [2883] 0.0445259623129993 0.0446280960787023
## [2885] 0.0448790578246882 0.0452511896097713
## [2887] 0.0456792419418999 0.0460310568002234
## [2889] 0.0461915924556843 0.0466539660197400
## [2891] 0.0470970321575573 0.0474120169326610
## [2893] 0.0474812643818562 0.0479844178686005
## [2895] 0.0482666095052829 0.0486652260832376
## [2897] 0.0488553193573252 0.0492410258113716
## [2899] 0.0496024480245209 0.0498946075613057
## [2901] 0.0504644414324685 0.0506968734894051
## [2903] 0.0511149835405979 0.0514536118878320
## [2905] 0.0518186650819740 0.0518915711310878
## [2907] 0.0522596529200791 0.0529472787456109
## [2909] 0.0529711075464806 0.0533680923654248
## [2911] 0.0537451898506536 0.0541034292202705
## [2913] 0.0547756299408147 0.0551722999629324
## [2915] 0.0552982990116554 0.0558583797792500
## [2917] 0.0562828119971154 0.0567097363078847
## [2919] 0.0567617424280318 0.0573803549507847
## [2921] 0.0579071930468982 0.0582506242664334
## [2923] 0.0585253465072210 0.0591490168092297
## [2925] 0.0593454528078920 0.0596232419213127
## [2927] 0.0600491518565379 0.0607871654198329
## [2929] 0.0611386491158217 0.0615147519740324
## [2931] 0.0616891277356807 0.0625032332730642
## [2933] 0.0629487820042915 0.0630870983746782
## [2935] 0.0635704450981739 0.0640832946413871
## [2937] 0.0643110854959684 0.0650523454696805
## [2939] 0.0654090582255517 0.0660643112675873
## [2941] 0.0662291204606336 0.0669575860204024
## [2943] 0.0670112844014255 0.0678133419277412
## [2945] 0.0682789924250402 0.0687981106500250
## [2947] 0.0690394854627525 0.0695308050414753
## [2949] 0.0700387013754897 0.0707183429617258
## [2951] 0.0708561841182710 0.0716181127308208
## [2953] 0.0718537524979923 0.0726086187361399
## [2955] 0.0729603598833098 0.0733075094819504
## [2957] 0.0741121740503763 0.0747294214470281
## [2959] 0.0749436388992182 0.0757833828583001
## [2961] 0.0761173943776465 0.0765669792168543
## [2963] 0.0772150660752770 0.0775484334130549
## [2965] 0.0781789090494731 0.0788763222535755
## [2967] 0.0795272101454024 0.0796534004273761
## [2969] 0.0807215527995615 0.0809227789224822
## [2971] 0.0814545276307172 0.0821407243927735
## [2973] 0.0825411518924844 0.0833191227778792
## [2975] 0.0837111952088566 0.0842234564274593
## [2977] 0.0849588817959609 0.0859009265413118
## [2979] 0.0861413672867757 0.0869907892144707
## [2981] 0.0876159140616268 0.0877059487949378
## [2983] 0.0887125779030905 0.0891976361044804
## [2985] 0.0898464431154523 0.0905415558807215
## [2987] 0.0911916371657396 0.0914674026357545
## [2989] 0.0925838861605995 0.0927088716228035
## [2991] 0.0937489141215411 0.0943775091750541
## [2993] 0.0951045892214518 0.0954335413330671
## [2995] 0.0962825156953287 0.0968994543947177
## [2997] 0.0973867181943762 0.0985774165578666
## [2999] 0.0990088747881357 0.0996008241606606
SVM_linear_tuning <- function(recipe_input, formula_input){
set.seed(123)
train_input <- recipe_input %>% bake(new_data=NULL)
tuning_cv_folds <- train_input %>%
vfold_cv(v = 10)
## mtry is the number of predictors to sample at each split
## min_n (the number of observations needed to keep splitting nodes)
model_spec <-svm_poly(cost=tune(),margin = tune(),degree=1) %>%
set_mode("regression") %>%
set_engine("kernlab")
tune_wf <- workflow() %>%
add_recipe(recipe_input) %>%
add_model(model_spec)
## automate generate grid for hyperparameters
model_grid <-
model_spec %>%
parameters() %>%
grid_regular(levels = c(15, 30))
tune_ctrl <- control_grid(save_pred = TRUE,
verbose = TRUE,
parallel_over = "everything")
library(doFuture)
registerDoFuture()
plan(multisession(workers = 30))
tune_res <- tune_grid(
tune_wf,
resamples = tuning_cv_folds,
metrics = metric_set(rmse),
grid = model_grid,
control= tune_ctrl
)
best_tune <- select_best(tune_res, metric = "rmse")
best_tuned_param <- show_best(tune_res, metric="rmse")
rf_final_wf <- tune_wf %>% finalize_workflow(best_tune)
return(list(svm_linear_wf_final = rf_final_wf,
best_svm_linear_model = best_tune,
best_svm_linear_forest_param = best_tuned_param))
}
svm_linear_model_spec <-svm_poly(cost=tune(),margin = tune(),degree=1) %>%
set_mode("regression") %>%
set_engine("kernlab")
svm_linear_grid <-
svm_linear_model_spec %>%
parameters() %>%
grid_regular(levels = c(15, 30))
##range of the grid
range(svm_linear_grid$cost)
## [1] 0.0009765625 32.0000000000
range(svm_linear_grid$margin)
## [1] 0.0 0.2
## unique elements of the grid
unique(svm_linear_grid$cost)
## [1] 0.0009765625 0.0020522591 0.0043128497 0.0090635108
## [5] 0.0190470883 0.0400277091 0.0841187620 0.1767766953
## [9] 0.3714985723 0.7807091822 1.6406707120 3.4478912850
## [13] 7.2457893141 15.2271224482 32.0000000000
unique(svm_linear_grid$margin)
## [1] 0.000000000 0.006896552 0.013793103 0.020689655
## [5] 0.027586207 0.034482759 0.041379310 0.048275862
## [9] 0.055172414 0.062068966 0.068965517 0.075862069
## [13] 0.082758621 0.089655172 0.096551724 0.103448276
## [17] 0.110344828 0.117241379 0.124137931 0.131034483
## [21] 0.137931034 0.144827586 0.151724138 0.158620690
## [25] 0.165517241 0.172413793 0.179310345 0.186206897
## [29] 0.193103448 0.200000000
SVM_RBF_tuning <- function(recipe_input, formula_input){
set.seed(123)
train_input <- recipe_input %>% bake(new_data=NULL)
tuning_cv_folds <- train_input %>%
vfold_cv(v = 10)
## mtry is the number of predictors to sample at each split
## min_n (the number of observations needed to keep splitting nodes)
model_spec <-svm_rbf(cost=tune(),rbf_sigma = tune(),margin = tune()) %>%
set_mode("regression") %>%
set_engine("kernlab")
tune_wf <- workflow() %>%
add_recipe(recipe_input) %>%
add_model(model_spec)
## automate generate grid for hyperparameters
model_grid <-
model_spec %>%
parameters() %>%
grid_regular(levels = c(15,10,30))
tune_ctrl <- control_grid(save_pred = TRUE, verbose = TRUE, parallel_over = "everything")
library(doFuture)
registerDoFuture()
plan(multisession(workers = 55))
tune_res <- tune_grid(
tune_wf,
resamples = tuning_cv_folds,
metrics = metric_set(rmse),
grid = model_grid,
control= tune_ctrl
)
best_tune <- select_best(tune_res,
metric = "rmse")
best_tuned_param <- show_best(tune_res,
metric="rmse")
rf_final_wf <- tune_wf %>% finalize_workflow(best_tune)
return(list(svm_rbf_wf_final = rf_final_wf,
best_svm_rbf_model = best_tune,
best_svm_rbf_forest_param = best_tuned_param))
}
Grid that tunes margin, cost and RBF sigma
svm_rbf_spec <-svm_rbf(cost=tune(),rbf_sigma = tune(),margin = tune()) %>%
set_mode("regression") %>%
set_engine("kernlab")
svm_rbf_grid <-
svm_rbf_spec %>%
parameters() %>%
grid_regular(levels = c(15,10, 30))
## range of the grid
range(svm_rbf_grid$cost)
## [1] 0.0009765625 32.0000000000
range(svm_rbf_grid$rbf_sigma)
## [1] 0.0000000001 1.0000000000
range(svm_rbf_grid$margin)
## [1] 0.0 0.2
##unique elements of the grid
unique(svm_rbf_grid$cost)
## [1] 0.0009765625 0.0020522591 0.0043128497 0.0090635108
## [5] 0.0190470883 0.0400277091 0.0841187620 0.1767766953
## [9] 0.3714985723 0.7807091822 1.6406707120 3.4478912850
## [13] 7.2457893141 15.2271224482 32.0000000000
unique(svm_rbf_grid$rbf_sigma)
## [1] 0.00000000010000 0.00000000129155 0.00000001668101
## [4] 0.00000021544347 0.00000278255940 0.00003593813664
## [7] 0.00046415888336 0.00599484250319 0.07742636826811
## [10] 1.00000000000000
unique(svm_rbf_grid$margin)
## [1] 0.000000000 0.006896552 0.013793103 0.020689655
## [5] 0.027586207 0.034482759 0.041379310 0.048275862
## [9] 0.055172414 0.062068966 0.068965517 0.075862069
## [13] 0.082758621 0.089655172 0.096551724 0.103448276
## [17] 0.110344828 0.117241379 0.124137931 0.131034483
## [21] 0.137931034 0.144827586 0.151724138 0.158620690
## [25] 0.165517241 0.172413793 0.179310345 0.186206897
## [29] 0.193103448 0.200000000
SVM_poly_tuning <- function(recipe_input, formula_input){
set.seed(123)
train_input <- recipe_input %>% bake(new_data=NULL)
tuning_cv_folds <- train_input %>%
vfold_cv(v = 10)
model_spec <-svm_poly(cost=tune(),
degree=tune(),
scale_factor = tune(),
margin = tune()) %>%
set_mode("regression") %>%
set_engine("kernlab")
tune_wf <- workflow() %>%
add_recipe(recipe_input) %>%
add_model(model_spec)
## automate generate grid for hyperparameters
model_grid <-
model_spec %>%
parameters() %>%
grid_regular(levels = c(15,4,10, 30))
tune_ctrl <- control_grid(save_pred = TRUE, verbose = TRUE,parallel_over = "everything")
library(doFuture)
registerDoFuture()
plan(multisession(workers = 30))
tune_res <- tune_grid(
tune_wf,
resamples = tuning_cv_folds,
metrics = metric_set(rmse),
grid = model_grid,
control= tune_ctrl
)
#saveRDS(tune_res, paste0(anotherFold,'working_memory_tasks/svm_poly_twoback_grid', '.RData'))
best_tune <- select_best(tune_res,
metric = "rmse")
best_tuned_param <- show_best(tune_res,
metric="rmse")
rf_final_wf <- tune_wf %>% finalize_workflow(best_tune)
return(list(svm_poly_wf_final = rf_final_wf,
best_svm_poly_model = best_tune,
best_svm_poly_forest_param = best_tuned_param))
}
SVM_poly_model_spec <-svm_poly(cost=tune(),degree=tune(),scale_factor = tune(),margin = tune()) %>%
set_mode("regression") %>%
set_engine("kernlab")
SVM_poly_grid <-
SVM_poly_model_spec %>%
parameters() %>%
grid_regular(levels = c(15,4,10, 30))
## get the grid range
range(SVM_poly_grid$cost)
## [1] 0.0009765625 32.0000000000
range(SVM_poly_grid$degree)
## [1] 1 3
range(SVM_poly_grid$scale_factor)
## [1] 0.0000000001 0.1000000000
range(SVM_poly_grid$margin)
## [1] 0.0 0.2
## get the unique elements of the grid
unique(SVM_poly_grid$cost)
## [1] 0.0009765625 0.0020522591 0.0043128497 0.0090635108
## [5] 0.0190470883 0.0400277091 0.0841187620 0.1767766953
## [9] 0.3714985723 0.7807091822 1.6406707120 3.4478912850
## [13] 7.2457893141 15.2271224482 32.0000000000
unique(SVM_poly_grid$degree)
## [1] 1 2 3
unique(SVM_poly_grid$scale_factor)
## [1] 0.0000000001 0.0000000010 0.0000000100 0.0000001000
## [5] 0.0000010000 0.0000100000 0.0001000000 0.0010000000
## [9] 0.0100000000 0.1000000000
unique(SVM_poly_grid$margin)
## [1] 0.000000000 0.006896552 0.013793103 0.020689655
## [5] 0.027586207 0.034482759 0.041379310 0.048275862
## [9] 0.055172414 0.062068966 0.068965517 0.075862069
## [13] 0.082758621 0.089655172 0.096551724 0.103448276
## [17] 0.110344828 0.117241379 0.124137931 0.131034483
## [21] 0.137931034 0.144827586 0.151724138 0.158620690
## [25] 0.165517241 0.172413793 0.179310345 0.186206897
## [29] 0.193103448 0.200000000
The mass univariate fit function.
Holdout_results is a function that takes one roi and fit a regression on it. The outputs of this function are model slope estimate and the prediction. Resp_results returns the slope estimate and prediction for all rois.
Median_extrac extracts the median value of the predictions of all rois that is significant.
holdout_results <- function(.x,training_data, testing_data, ...) {
# Fit the model to the 75%
mod <- lm(..., data = training_data)
slope <- mod %>% broom::tidy() %>%
filter(term != '(Intercept)') %>%
rename(roi = term)
preds <- predict(mod, newdata = testing_data)%>%
tibble::as_tibble()
names(preds) <-slope$roi[1]
return(list(model_spec= slope, model_pred = preds))
}
resp_result <- function(.x,test_input,recipe_input){
x=.x
testing_data <- bake(prep(recipe_input), new_data = test_input)
training_data <- bake(prep(recipe_input), new_data = NULL)
formulas <- paste0(x ,' ~ ', colnames(select(data_all_listwise, starts_with("roi_"))))
results_test_simple <-map(formulas,
~ holdout_results(.x=x,
training_data =training_data,
testing_data =testing_data,...))
model_broom <- map(results_test_simple,"model_spec") %>%
do.call(rbind,.)
model_pred <- map(results_test_simple,"model_pred") %>%
do.call(cbind,.) %>%
mutate(response = testing_data[[x]])
return(list(model_broom = model_broom,model_pred= model_pred))
return(results_test_simple)
}
### extract median
median_extract <- function(resp_input, model_input, pred_input){
roi_left <- model_input[["roi"]]
pred_selected <- pred_input %>% select(all_of(roi_left), all_of(resp_input))
pred_median <- apply(pred_selected[,-1], 1, median)
pred_tibble <- pred_selected %>% mutate(model_pred = pred_median)
return(pred_tibble)
}
The model fitting function for the algorithms including elastic net, linear svm, RBF svm, polynomial svm and random forest. The output is a list. The one end with _final_fit is a model fit object and the one end with _predict is model prediction.
model_final_fit <- function(recipe_input,
wf_input,
formula_input,
model_name,
test_data){
library(doFuture)
registerDoFuture()
plan(multisession(workers = 30))
train_input <- recipe_input %>%
bake(new_data=NULL)
##baked recipe scale the test data with the mean and sd in the training data
test_input <- bake( recipe_input,
new_data=test_data)
model_final_fit <-
wf_input%>%
parsnip::extract_spec_parsnip()%>%
parsnip::fit(data = train_input, formula= formula_input)
model_predict <- predict(model_final_fit,
new_data = test_input %>%
drop_na() ) %>%
rename(model_predict = .pred) %>%
bind_cols(test_input%>% drop_na())
##processing output
output_list <- vector("list",length=2)
names(output_list) <- c(paste0(model_name,"_final_fit"),
paste0(model_name,"_predict"))
output_list[[paste0(model_name,"_final_fit")]] <- model_final_fit
output_list[[paste0(model_name,"_predict")]] <- model_predict
return(output_list)
}
The xgboost fit function is special with more types of output 1. Model fit object of xgboost 2. Model prediction for the test data 3. Shapley variable importance for the training dataset 4. The summary plot of all shapley value
xgboost_model_pred <- function(resp_input,
param_input, recipe_input,
train_input = gfactor_train_all,
test_input = gfactor_test_all){
training_data <- recipe_input%>%
prep(training = train_input) %>%
bake(new_data = NULL)
training_matrix <- training_data %>%
select(starts_with("roi_"))%>%
as.matrix()
training_label <- training_data[[resp_input]] ## labeling out the response variable
testing_data <- recipe_input %>%
bake(new_data = test_input)%>% drop_na()
testing_matrix <- testing_data %>%
select(starts_with("roi_"))%>%
as.matrix()
testing_label <- testing_data[[resp_input]] ## labeling out the response variable
dTrain <- xgboost::xgb.DMatrix(data = training_matrix,
label=training_label)
dtest <-xgboost::xgb.DMatrix(data = testing_matrix,
label=testing_label)
xgboost_fit <- xgboost::xgboost(data=dTrain,
eta=param_input$learn_rate,
gamma=param_input$loss_reduction,
max_depth=param_input$tree_depth,
min_child_weight=param_input$min_n,
subsample=param_input$sample_size,
colsample_bynode = param_input$mtry/dim(training_data)[1],
nrounds = 500,
objective="reg:squarederror",verbose = 0)
model_predict <- predict(xgboost_fit,dtest)%>%
tibble::as_tibble()%>%
rename(model_predict = value)%>%
bind_cols(recipe_input %>%
bake(new_data = test_input)%>%
drop_na())
model_predict_train <- predict(xgboost_fit,
dTrain,predcontrib = TRUE)
##extract the shapley values have to be the same with the ROIs
shapley_plot <- xgboost::xgb.ggplot.shap.summary(training_matrix,
model_predict_train,
model = xgboost_fit,
top_n = 30)
output_list <- vector("list",length=4)
names(output_list) <- c(paste0("xgboost","_final_fit"),
"xgboost_predict",
"xgboost_predict_train",
"xgboost_shap_plot")
output_list[[paste0("xgboost","_final_fit")]] <- xgboost_fit
output_list[[paste0("xgboost","_predict")]] <- model_predict
output_list[[paste0("xgboost","_predict_train")]] <- model_predict_train
output_list[[paste0("xgboost","_shap_plot")]] <- shapley_plot
return(output_list)
}
Get the formulas and the recipe.
Scaling WAS done by this recipe.
But the outlier-removal procedure was done in the IQR_remove function because recipe didn’t work well when we removed rows from the data set.
data_train <- IQR_remove(data_split = split_train, resp_vec = resp_names)
data_test <- IQR_remove(data_split = split_test, resp_vec = resp_names)
formula_list <- resp_names %>%
map(.,~as.formula(paste(.,paste(feature_names,collapse = "+"),sep="~")))
recipe_prep <- function(resp_var,formula_input,train_input=data_train){
norm_recipe <- recipe( formula_input, data = train_input) %>%
update_role(starts_with("roi_"), new_role = "predictor")%>%
update_role(resp_var, new_role = "outcome" )%>%
step_dummy(all_nominal()) %>%
prep(training = train_input, retain = TRUE)
return(norm_recipe)
}
recipe_list <- map2(.x = resp_names,
.y = formula_list,
~recipe_prep(resp_var = .x,
formula_input =.y))
##select subject information from the data with column selection
subj_info_all <- Nback.QCedNoPhil%>%
select(all_of(c('SUBJECTKEY', 'MRI_INFO_DEVICESERIALNUMBER', 'SITE_ID_L','SEX')))
## print the size of training data after IRQ
dim(data_train)
## [1] 2982 181
data_train_subj <- left_join(data_train, subj_info_all, by = subj_info)
## males
sum(data_train_subj$SEX =="M")
## [1] 1511
## females
sum(data_train_subj$SEX =="F")
## [1] 1470
## print the size of training data after IRQ
dim(data_test)
## [1] 1007 181
data_test_subj <- left_join(data_test, subj_info_all, by = subj_info)
## males
sum(data_test_subj$SEX =="M")
## [1] 509
## females
sum(data_test_subj$SEX =="F")
## [1] 498
These are funcitons for mass univariate, which cannot be done the same way with other algorithms. Here we get the mass univariate model fitting and predictive values and select rois that are survived the FDR and Bonferroni correction.
simple_all_IQR <- map2(.x=resp_names,
.y = recipe_list,
~resp_result(.x,
recipe_input = .y,
test_input = data_test))
univariate_model_broom <- map(simple_all_IQR ,
"model_broom")
univariate_model_pred <- map(simple_all_IQR ,
"model_pred")
univariate_model_pred <- map2(.x=univariate_model_pred,
.y=resp_names,
function(pred_input=.x, resp_input){
names_vec <- c(names(pred_input)[1:167],
resp_input)
names(pred_input) <- names_vec
return(pred_input)})
univariate_model_broom <- univariate_model_broom %>%
map(., ~ mutate(.,
FDR = p.adjust(p.value, method = 'fdr'),
bonferroni= p.adjust(p.value, method = 'bonferroni')))
univariate_model_fdr <-
univariate_model_broom %>%
map(., ~ filter(.,FDR <= 0.05))
univariate_model_bonferroni <-
univariate_model_broom %>%
map(., ~ filter(.,bonferroni <= 0.05))
median_univar_fdr_pred <- pmap(list(resp_names,
univariate_model_fdr,
univariate_model_pred),
~median_extract(resp_input=..1,
model_input=..2,
pred_input=..3) )
median_univar_bonferroni_pred <- pmap(list(resp_names,
univariate_model_bonferroni,
univariate_model_pred),
~median_extract(resp_input=..1,
model_input=..2,
pred_input=..3) )
Fit the OLs model
OLS_fit <- map2(.x=formula_list,
.y=recipe_list ,
~lm(.x,
data = .y %>%
bake(new_data= NULL)))
OLS_predict_list <- map2(.x=OLS_fit,
.y=recipe_list,
~predict(.x,newdata = bake(prep(.y),new_data = data_test ))%>% tibble::as_tibble() %>%
rename(model_pred = value)%>%
bind_cols(bake(prep(.y), new_data = data_test)))
yardstick::rsq_trad(data = OLS_predict_list$TFMRI_NB_ALL_BEH_C2B_RATE,
truth =.data$TFMRI_NB_ALL_BEH_C2B_RATE,
estimate =.data$model_pred)
## # A tibble: 1 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 rsq_trad standard 0.240
yardstick::mae(data = OLS_predict_list$TFMRI_NB_ALL_BEH_C2B_RATE,
truth =.data$TFMRI_NB_ALL_BEH_C2B_RATE,
estimate =.data$model_pred )
## # A tibble: 1 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 mae standard 0.705
tidy_fit_ols_all <-OLS_fit %>% map(., ~broom::tidy(.))
tidy_fit_ols_all <- tidy_fit_ols_all %>% map(.,~filter(.,term != '(Intercept)' & p.value < 0.05 )%>%
mutate(.,roi = str_remove(term, 'roi_'))%>%
left_join( .,new_shorter_names,by="roi")%>%
mutate(.,direction = ifelse(estimate >= median(estimate), "big","small")))
resp_names %>% map(~ggplot(tidy_fit_ols_all[[.]],aes(fct_reorder(roiShort, estimate), estimate,
ymin = estimate - 2 * std.error,
ymax = estimate + 2 * std.error)) +
geom_hline(yintercept = 0, linetype = 'dashed', col = 'grey60') +
geom_pointrange(fatten = 1.5, col = 'grey60') +
coord_flip() +
labs(x = 'Explanatory variables (Brain Regions)', y = 'Coefficients (± 2 std. errors)',
title = paste0(resp_var_plotting$longer_name[[which(resp_var_plotting$response==.)]],
'\nOLS Coeffcients (p < .05)')) +
facet_wrap(~ direction, scales = 'free_y') +
theme(
axis.title.x = element_text(size = 15),
axis.text.x = element_text(size = 12),
axis.title.y = element_text(size = 15),
axis.text.y = element_text(size = 12),
legend.text = element_text(size = 10),
plot.title = element_text(size=16)) +
theme(
strip.background = element_blank(),
strip.text.x = element_blank()
))
## $TFMRI_NB_ALL_BEH_C2B_RATE
##
## $NIHTBX_PICVOCAB_UNCORRECTED
##
## $NIHTBX_FLANKER_UNCORRECTED
##
## $NIHTBX_LIST_UNCORRECTED
##
## $NIHTBX_CARDSORT_UNCORRECTED
##
## $NIHTBX_PATTERN_UNCORRECTED
##
## $NIHTBX_PICTURE_UNCORRECTED
##
## $NIHTBX_READING_UNCORRECTED
##
## $LMT_SCR_PERC_CORRECT
##
## $PEA_RAVLT_LD_TRIAL_VII_TC
##
## $PEA_WISCV_TRS
library(doFuture)
registerDoFuture()
plan(multisession(workers = 30))
start_time <- Sys.time()
enet_tune <- map2(recipe_list,formula_list,
~enet_tuning(recipe_input = .x,
formula_input = .y))
saveRDS(enet_tune, paste0(anotherFold,'working_memory_tasks/windows/enet_tune_results_Dec_30_2021', '.RData'))
stop_time <- Sys.time()
start_time <- Sys.time()
random_forest_tune <- map2(recipe_list,formula_list,
~random_forest_tuning(recipe_input = .x,
formula_input = .y))
saveRDS(random_forest_tune, paste0(anotherFold,'working_memory_tasks/windows/random_forest_tune_results_Dec_13_2021', '.RData'))
stop_time <- Sys.time()
start_time <- Sys.time()
svm_linear_tune <- map2(recipe_list,formula_list,
~SVM_linear_tuning(recipe_input = .x,
formula_input = .y))
saveRDS(svm_linear_tune, paste0(anotherFold,'working_memory_tasks/windows/SVM_linear_tune_results_Dec_13_2021', '.RData'))
stop_time <- Sys.time()
start_time <- Sys.time()
xgboost_tune <- map2(recipe_list,formula_list,
~xgboost_tuning(recipe_input = .x,
formula_input = .y))
saveRDS(xgboost_tune, paste0(anotherFold,'working_memory_tasks/xgboost_tune_gfactor_results_Dec_13_2021', '.RData'))
stop_time <- Sys.time()
start_time <- Sys.time()
#svm_rbf_tune <-map2(recipe_list,formula_list,
# ~SVM_RBF_tuning(recipe_input = .x,
# formula_input = .y))
for(i in 4:length(resp_names)){
svm_rbf_recipe_input <- recipe_list[[resp_names[i]]]
svm_rbf_formula_input <- formula_list[[resp_names[i]]]
svm_rbf_tune <- SVM_RBF_tuning(recipe_input = svm_rbf_recipe_input,
formula_input = svm_rbf_formula_input)
saveRDS(svm_rbf_tune, paste0(anotherFold,'working_memory_tasks/windows/svm_rbf_',resp_names[i],'_tune_results_Mar_16_2022','.RData'))
}
#saveRDS(svm_rbf_tune, paste0(anotherFold,'working_memory_tasks/windows/SVM_RBF_tune_results_Mar_16_2021', '.RData'))
stop_time <- Sys.time()
start_time <- Sys.time()
#svm_poly_tune <- map2(recipe_list,formula_list,
# ~SVM_poly_tuning(recipe_input = .x,
# formula_input = .y))
for(i in 7:8){
svm_poly_recipe_input <- recipe_list[[resp_names[i]]]
svm_poly_formula_input <- formula_list[[resp_names[i]]]
svm_poly_tune <- SVM_poly_tuning(recipe_input = svm_poly_recipe_input,
formula_input = svm_poly_formula_input)
saveRDS(svm_poly_tune, paste0(anotherFold,'working_memory_tasks/windows/svm_poly_',resp_names[i],'_tune_results_Dec_16_2021','.RData'))
}
stop_time <- Sys.time()
enet_tune <- readRDS(file = paste0(anotherFold,'working_memory_tasks/windows/enet_tune_results_Dec_30_2021', '.RData'))
random_forest_tune <- readRDS(file = paste0(anotherFold,'working_memory_tasks/windows/random_forest_tune_results_Dec_13_2021', '.RData'))
xgboost_tune <- readRDS(file = paste0(anotherFold,'working_memory_tasks/windows/xgboost_tune_results_Dec_13_2021', '.RData'))
svm_linear_tune <- readRDS(file = paste0(anotherFold,'working_memory_tasks/windows/SVM_linear_tune_results_Dec_13_2021', '.RData'))
#SVM_RBF_tune <- readRDS(file = paste0(anotherFold,'working_memory_tasks/windows/SVM_RBF_tune_results_Dec_13_2021', #'.RData'))
SVM_RBF_tune <- vector(mode = "list", length = length(resp_names) )
names(SVM_RBF_tune) <- resp_names
### load the tuned results individually
for( i in 1:length(resp_names)){
SVM_RBF_tune[[resp_names[i]]] <-
readRDS(file = paste0(anotherFold,'working_memory_tasks/windows/svm_rbf_', resp_names[i],'_tune_results_Mar_16_2022', '.RData'))
}
### svm polynomial took the longest, so we need a different way to save and load the data for each response variables
svm_poly_tune <- vector(mode = "list", length = length(resp_names) )
names(svm_poly_tune) <- resp_names
### load the tuned results individually
for( i in 1:length(resp_names)){
svm_poly_tune[[resp_names[i]]] <-
readRDS(file = paste0(anotherFold,'working_memory_tasks/windows/SVM_poly_', resp_names[i],'_tune_results_Dec_16_2021', '.RData'))
}
enet_wfl_final_list <- map(enet_tune, "enet_wf_final")
best_enet_model_list <- map(enet_tune, "best_enet_model")
Note Using future map would cause the following error message:
Error in UseMethod(“extract_spec_parsnip”) :
no applicable method for ‘extract_spec_parsnip’ applied to an object of
class “workflow”
enet_final_fit <-pmap(list(recipe_list,enet_wfl_final_list, formula_list),
~model_final_fit(test_data = data_test,
recipe_input = ..1,
wf_input = ..2,
formula_input = ..3,
model_name = "enet"))
enet_final_fit_list <- map(enet_final_fit, "enet_final_fit")
enet_predicted_list <- map(enet_final_fit, "enet_predict")
yardstick::mae(data = enet_predicted_list$TFMRI_NB_ALL_BEH_C2B_RATE,
truth =.data$TFMRI_NB_ALL_BEH_C2B_RATE,
estimate =.data$model_predict )
## # A tibble: 1 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 mae standard 0.699
yardstick::rsq_trad(data = enet_predicted_list$TFMRI_NB_ALL_BEH_C2B_RATE,
truth =.data$TFMRI_NB_ALL_BEH_C2B_RATE,
estimate =.data$model_predict )
## # A tibble: 1 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 rsq_trad standard 0.261
matrix_train <-bake(recipe_list[[resp_names[1]]],
new_data = NULL)%>%
select(starts_with("roi_"))%>%
as.matrix()
resp_train <- resp_names %>%
map(.,
~bake(recipe_list[[.]],
new_data = NULL)%>%
select(-starts_with("roi_"))%>%
as.vector())
fit_explorer_all <-resp_names %>%
future_map(.,~eNetXplorer(x = matrix_train ,
y = resp_train[[.]][[.]],
alpha = best_enet_model_list[[.]][["mixture"]],
n_fold = 10,
nlambda.ext = 1000,
nlambda = 1000,
scaled = TRUE,
QF_gaussian = "mse" ,
seed = 123456))
saveRDS(fit_explorer_all,
paste0(anotherFold,'working_memory_tasks/windows/fit_explorer_all_Dec_30_2021_rmse', '.RData'))
lambdas_all <- vector("list", length = length(resp_names))
names(lambdas_all)<- resp_names
lambdas_all_best <- vector("list", length = length(resp_names))
names(lambdas_all_best)<- resp_names
summary_enet_all <- vector("list", length = length(resp_names))
names(summary_enet_all)<- resp_names
for(i in 1:length(resp_names)){
lambdas_all[[resp_names[i]]] <- fit_explorer_all[[resp_names[i]]][["lambda_values"]]
lambdas_all_best[[resp_names[i]]] <- fit_explorer_all[[resp_names[i]]][["best_lambda"]]
summary_enet_all[[resp_names[i]]]<- as_tibble(summary(fit_explorer_all[[resp_names[i]]])[[2]]) %>%
slice(1)
}
summary_enet_all %>% bind_rows() %>%
mutate(respones = resp_var_plotting$short_name)%>%
rename(.,Alpha = alpha,
`Best-tune lambda` = lambda.max,
`MSE` = QF.est,
`P-value` = model.vs.null.pval) %>%
pander::pander(split.cell = 80,
split.table = Inf,
justify = 'left')
Alpha | Best-tune lambda | MSE | P-value | respones |
---|---|---|---|---|
0.05 | 0.1063 | -0.7615 | 0.0003998 | 2-back Work Mem |
0.905 | 0.01376 | -0.8848 | 0.0003998 | Pic Vocab |
0.05 | 0.2432 | -0.9687 | 0.0003998 | Flanker |
0.05 | 0.2268 | -0.9144 | 0.0003998 | List Work Mem |
0.145 | 0.1468 | -0.9526 | 0.0003998 | Card Sort |
0.05 | 0.4371 | -0.9816 | 0.0003998 | Pattern Speed |
0.05 | 0.3214 | -0.9648 | 0.0003998 | Seq Memory |
0.05 | 0.1788 | -0.912 | 0.0003998 | Reading Recog |
0.145 | 0.1003 | -0.939 | 0.0003998 | Little Man |
0.05 | 0.2321 | -0.9684 | 0.0003998 | Audi Verbal |
0.05 | 0.2041 | -0.9153 | 0.0003998 | Matrix Reason |
alpha_vals <- best_enet_model_list %>%
map(.,~paste0("a",.[["mixture"]]))
enet_lambda_grid <-resp_names%>%
map(.,~qplot(fit_explorer_all[[.]][["lambda_values"]][[alpha_vals[[.]]]],
fit_explorer_all[[.]][["lambda_QF_est"]][[alpha_vals[[.]]]],
geom = 'line') +
scale_x_log10() +
geom_vline(xintercept = lambdas_all_best[[.]],
col = 'red',
linetype = 'dashed') +
labs(x = NULL,
y = NULL,
title =resp_var_plotting$short_name[[which(resp_var_plotting$response==.)]] ))
title_enet_lambda <- ggdraw() +
draw_label(
"Elastic Net Lambda (Penalty) Parameter Tuning",
fontface = 'bold',
x = 0,
hjust = 0
) +
theme(
# add margin on the left of the drawing canvas,
# so title is aligned with left edge of first plot
plot.margin = margin(0.1, 0.1, 0.1, 7)
)
enet_lambda_all_figure<- plot_grid(title_enet_lambda,
plot_grid(plotlist = enet_lambda_grid,nrow=4,ncol=3),
nrow = 2 ,
rel_heights = c(0.1, 1))
ggpubr::annotate_figure(enet_lambda_all_figure,
left= ggpubr::text_grob("Cross Validated Predictive Ability\n(MSE)",
size=15,
rot=90),
bottom = ggpubr::text_grob("Lambda",size=15))
extract_tibble <- function(elastic_mod, alpha_index) {
variable <- elastic_mod$feature_coef_wmean[, alpha_index] %>% names()
wmean <- elastic_mod$feature_coef_wmean[, alpha_index]
wsd <- elastic_mod$feature_coef_wsd[, alpha_index]
null_wmean <- elastic_mod$null_feature_coef_wmean[, alpha_index]
null_wsd <- elastic_mod$null_feature_coef_wsd[, alpha_index]
pvalue <- elastic_mod$feature_coef_model_vs_null_pval[, alpha_index]
tib <- tibble(variable, wmean, wsd, null_wmean, null_wsd, pvalue)
tib <- tib %>%
gather(key = 'placeholder',
value = 'value',
wmean,
wsd,
null_wmean,
null_wsd) %>%
mutate(type = ifelse(str_detect(placeholder, 'null'),
'null',
'target'),
placeholder = (str_remove(placeholder, 'null_'))) %>%
mutate(type = factor(type,
labels = c('Null', 'Target'))) %>%
spread(placeholder, value)
tib
}
## the length of coef_enet_all is doubled because of the null and permuted models
coefs_enet_all <- resp_names %>%
map(.,~extract_tibble(fit_explorer_all[[.]],
alpha_index = paste0("a",best_enet_model_list[[.]]$mixture)))
coefs_enet_all <- coefs_enet_all %>%
map(.,~filter(.,pvalue < 0.05) %>%
mutate(.,type = ifelse(type == 'Null',
'Null permuted models',
'Target models'),
roi = str_remove(variable, 'roi_'))%>%
left_join( .,new_shorter_names,by="roi"))
roi_num_enet <- coefs_enet_all %>% map(.,~dim(.)[1])
max_roi_enet <- max(as.numeric(roi_num_enet))
##the trick used here to divide the columns into two group is that when
##the roi is large enough and the estimated parameter is less than the medial then this roi would be in the group "small". so if the roi is not large enough then there is only one group "big"
coefs_enet_test <- coefs_enet_all[[resp_names[1]]] %>%
group_by(type)
coefs_enet_test <- coefs_enet_test%>%
nest(-type)
coefs_enet_test[[2]][[1]] <- coefs_enet_test[[2]][[1]] %>%
mutate(direction1 = ifelse(coefs_enet_test[[2]][[1]]$wmean >= median(coefs_enet_test[[2]][[1]]$wmean)|roi_num_enet[[resp_names[1]]] <= floor(max_roi_enet/2),"big","small"))
coefs_enet_test[[2]][[2]] <- coefs_enet_test[[2]][[2]] %>%
mutate(direction1=coefs_enet_test[[2]][[1]]$direction1)
coefs_enet_test <- coefs_enet_test %>%
unnest()
coefs_enet_all <- coefs_enet_all %>% map(.,~group_by(.,type))
coefs_enet_all <- coefs_enet_all %>% map(.,~nest(.,-type))
for(i in 1:length(resp_names)){
coefs_enet_all[[resp_names[i]]][["data"]][[2]]<-
coefs_enet_all[[resp_names[i]]][["data"]][[2]] %>%
mutate(direction = ifelse(coefs_enet_all[[resp_names[i]]][["data"]][[2]]$wmean >= median(coefs_enet_all[[resp_names[i]]][["data"]][[2]]$wmean)|roi_num_enet[[resp_names[i]]] <= floor(max_roi_enet/2), "big","small"))
coefs_enet_all[[resp_names[i]]][["data"]][[1]] <-
coefs_enet_all[[resp_names[i]]][["data"]][[1]] %>%
mutate(direction=coefs_enet_all[[resp_names[i]]][["data"]][[2]]$direction)
}
coefs_enet_all <- coefs_enet_all %>%map(.,~unnest(.))
resp_names %>% map(.,
~ggplot(coefs_enet_all[[.]],
aes(x = fct_reorder(roiShort, wmean),
y = wmean,
ymax = wmean + 2 * wsd,
ymin = wmean - 2 * wsd,
col = type)) +
geom_pointrange(fatten = 0.5, key_glyph = 'point') +
scale_y_continuous(labels = numform::ff_num(zero = 0, digits = 2)) +
scale_color_grey(start = 0.7, end = 0.5) +
coord_flip() +
guides(colour = guide_legend(override.aes = list(size = 2.5)))+
labs(x = 'Explanatory Variables (Brain Regions)',
y = 'Averaged Coefficient Across Models (±2 Std. dev)',
col = 'Model type',
title = paste0(resp_var_plotting$longer_name[[which(resp_var_plotting$response==.)]],
"\nElastic Net Coefficients (p < .05)")) +
facet_wrap(~ direction, scales = 'free_y') +
scale_color_manual(values = c("#56B4E9", "black"),
labels = c("Permuted Null", "Target")) +
theme_bw() +
theme(legend.title=element_blank()) +
theme(legend.position = "top") +
theme(
axis.title.x = element_text(size = 15),
axis.text.x = element_text(size = 12),
axis.title.y = element_text(size = 15),
axis.text.y = element_text(size = 12),
legend.text = element_text(size = 15),
plot.title = element_text(size=15)) +
theme(
strip.background = element_blank(),
strip.text.x = element_blank()) +
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank())
)
## $TFMRI_NB_ALL_BEH_C2B_RATE
##
## $NIHTBX_PICVOCAB_UNCORRECTED
##
## $NIHTBX_FLANKER_UNCORRECTED
##
## $NIHTBX_LIST_UNCORRECTED
##
## $NIHTBX_CARDSORT_UNCORRECTED
##
## $NIHTBX_PATTERN_UNCORRECTED
##
## $NIHTBX_PICTURE_UNCORRECTED
##
## $NIHTBX_READING_UNCORRECTED
##
## $LMT_SCR_PERC_CORRECT
##
## $PEA_RAVLT_LD_TRIAL_VII_TC
##
## $PEA_WISCV_TRS
random_forest_wfl_final_list <- map(random_forest_tune, "random_forest_wf_final")
best_random_forest_model_list <- map(random_forest_tune, "best_random_forest_model")
random_forest_final_fit <-pmap(list(recipe_list,
random_forest_wfl_final_list,
formula_list),
~model_final_fit(test_data = data_test,
recipe_input = ..1,
wf_input = ..2,
formula_input = ..3,
model_name = "random_forest"))
random_forest_final_fit_list <- map(random_forest_final_fit, "random_forest_final_fit")
random_forest_predicted_list <- map(random_forest_final_fit, "random_forest_predict")
yardstick::mae(data = random_forest_predicted_list$TFMRI_NB_ALL_BEH_C2B_RATE,
truth =.data$TFMRI_NB_ALL_BEH_C2B_RATE,
estimate =.data$model_predict )
## # A tibble: 1 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 mae standard 0.723
yardstick::rsq_trad(data = random_forest_predicted_list$TFMRI_NB_ALL_BEH_C2B_RATE,
truth =.data$TFMRI_NB_ALL_BEH_C2B_RATE,
estimate =.data$model_predict )
## # A tibble: 1 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 rsq_trad standard 0.217
xgboost_wfl_final_list <- map(xgboost_tune, "xgboost_wf_final")
best_xgboost_model_list <- map(xgboost_tune, "best_xgboost_model")
xgboost_final_fit <-future_pmap(list(recipe_list,
best_xgboost_model_list,
resp_names),
~xgboost_model_pred(
recipe_input=..1,
param_input=..2,
resp_input=..3,
train_input = data_train,
test_input = data_test),
.options = furrr::furrr_options(seed = 123456))
https://www.rdocumentation.org/packages/xgboost/versions/0.71.2/topics/predict.xgb.Booster
Setting predcontrib = TRUE allows to calculate contributions of each feature to individual predictions. For “gbtree” booster, feature contributions are SHAP values (Lundberg 2017) that sum to the difference between the expected output of the model and the current prediction (where the hessian weights are used to compute the expectations).
“BIAS” is the shapley values for the response variable.
xgboost_final_fit_list <- map(xgboost_final_fit, "xgboost_final_fit")
xgboost_predicted_list <- map(xgboost_final_fit, "xgboost_predict")
xgboost_predicted_train_list <- map(xgboost_final_fit, "xgboost_predict_train")
xgboost_shap_list <- map(xgboost_final_fit, "xgboost_shap_plot")
yardstick::mae(data = xgboost_predicted_list$TFMRI_NB_ALL_BEH_C2B_RATE,
truth =.data$TFMRI_NB_ALL_BEH_C2B_RATE,
estimate =.data$model_predict )
## # A tibble: 1 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 mae standard 0.726
yardstick::rsq_trad(data = xgboost_predicted_list$TFMRI_NB_ALL_BEH_C2B_RATE,
truth =.data$TFMRI_NB_ALL_BEH_C2B_RATE,
estimate =.data$model_predict )
## # A tibble: 1 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 rsq_trad standard 0.208
svm_linear_wfl_final_list <- map(svm_linear_tune, "svm_linear_wf_final")
best_svm_linear_model_list <- map(svm_linear_tune, "best_svm_linear_model")
svm_linear_final_fit <-pmap(list(recipe_list,
svm_linear_wfl_final_list,
formula_list),
~model_final_fit(test_data = data_test,
recipe_input = ..1,
wf_input = ..2,
formula_input = ..3,
model_name = "svm_linear"))
svm_linear_final_fit_list <- map(svm_linear_final_fit, "svm_linear_final_fit")
svm_linear_predicted_list <- map(svm_linear_final_fit, "svm_linear_predict")
yardstick::mae(data = svm_linear_predicted_list$TFMRI_NB_ALL_BEH_C2B_RATE,
truth =.data$TFMRI_NB_ALL_BEH_C2B_RATE,
estimate =.data$model_predict )
## # A tibble: 1 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 mae standard 0.703
yardstick::rsq_trad(data = svm_linear_predicted_list$TFMRI_NB_ALL_BEH_C2B_RATE,
truth =.data$TFMRI_NB_ALL_BEH_C2B_RATE,
estimate =.data$model_predict )
## # A tibble: 1 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 rsq_trad standard 0.247
yardstick::mae(data = svm_linear_predicted_list$NIHTBX_READING_UNCORRECTED,
truth =.data$NIHTBX_READING_UNCORRECTED,
estimate =.data$model_predict )
## # A tibble: 1 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 mae standard 0.711
yardstick::rsq_trad(data = svm_linear_predicted_list$NIHTBX_READING_UNCORRECTED,
truth =.data$NIHTBX_READING_UNCORRECTED,
estimate =.data$model_predict )
## # A tibble: 1 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 rsq_trad standard 0.0847
SVM_RBF_wfl_final_list <- map(SVM_RBF_tune, "svm_rbf_wf_final")
best_SVM_RBF_model_list <- map(SVM_RBF_tune, "best_svm_rbf_model")
SVM_RBF_final_fit <-pmap(list(recipe_list,
SVM_RBF_wfl_final_list,
formula_list),
~model_final_fit(test_data = data_test,
recipe_input = ..1,
wf_input = ..2,
formula_input = ..3,
model_name = "SVM_RBF"))
SVM_RBF_final_fit_list <- map(SVM_RBF_final_fit, "SVM_RBF_final_fit")
SVM_RBF_predicted_list <- map(SVM_RBF_final_fit, "SVM_RBF_predict")
yardstick::mae(data = SVM_RBF_predicted_list$TFMRI_NB_ALL_BEH_C2B_RATE,
truth =.data$TFMRI_NB_ALL_BEH_C2B_RATE,
estimate =.data$model_predict )
## # A tibble: 1 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 mae standard 0.696
yardstick::rsq_trad(data = SVM_RBF_predicted_list$TFMRI_NB_ALL_BEH_C2B_RATE,
truth =.data$TFMRI_NB_ALL_BEH_C2B_RATE,
estimate =.data$model_predict )
## # A tibble: 1 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 rsq_trad standard 0.258
svm_poly_wfl_final_list <- map(svm_poly_tune, "svm_poly_wf_final")
best_svm_poly_model_list <- map(svm_poly_tune, "best_svm_poly_model")
svm_poly_final_fit <-pmap(list(recipe_list,
svm_poly_wfl_final_list,
formula_list),
~model_final_fit(test_data = data_test,
recipe_input = ..1,
wf_input = ..2,
formula_input = ..3,
model_name = "svm_poly"))
svm_poly_final_fit_list <- map(svm_poly_final_fit, "svm_poly_final_fit")
svm_poly_predicted_list <- map(svm_poly_final_fit, "svm_poly_predict")
yardstick::mae(data = svm_poly_predicted_list$TFMRI_NB_ALL_BEH_C2B_RATE,
truth =.data$TFMRI_NB_ALL_BEH_C2B_RATE,
estimate =.data$model_predict )
## # A tibble: 1 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 mae standard 0.702
yardstick::rsq_trad(data = svm_poly_predicted_list$TFMRI_NB_ALL_BEH_C2B_RATE,
truth =.data$TFMRI_NB_ALL_BEH_C2B_RATE,
estimate =.data$model_predict )
## # A tibble: 1 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 rsq_trad standard 0.247
remove the outliers of the dataset and fit the bifactor model of the g factor
TaskDVs1Batch = c("NIHTBX_FLANKER_UNCORRECTED",
"NIHTBX_CARDSORT_UNCORRECTED",
"NIHTBX_PATTERN_UNCORRECTED",
"NIHTBX_PICVOCAB_UNCORRECTED",
"NIHTBX_READING_UNCORRECTED",
"NIHTBX_PICTURE_UNCORRECTED",
"PEA_RAVLT_LD_TRIAL_VII_TC",
"NIHTBX_LIST_UNCORRECTED",
"LMT_SCR_PERC_CORRECT",
"PEA_WISCV_TRS"
)
processed_split_train <- split_train %>%
select(all_of(subj_info), all_of(TaskDVs1Batch))%>%
drop_na()%>%
IQR_remove(resp_vec = all_of(TaskDVs1Batch))
processed_split_test <- split_test %>%
select(all_of(subj_info),all_of(TaskDVs1Batch))%>%
drop_na()%>%
IQR_remove(resp_vec = all_of(TaskDVs1Batch))
NeuroCogBiFac <-'
Language_Reasoning =~ NIHTBX_PICVOCAB_UNCORRECTED + NIHTBX_READING_UNCORRECTED + NIHTBX_LIST_UNCORRECTED + PEA_WISCV_TRS
Cognitive_Flexibility =~ NIHTBX_FLANKER_UNCORRECTED + NIHTBX_CARDSORT_UNCORRECTED + NIHTBX_PATTERN_UNCORRECTED
Memory_Recall =~ NIHTBX_PICTURE_UNCORRECTED + PEA_RAVLT_LD_TRIAL_VII_TC
g =~ NIHTBX_PICVOCAB_UNCORRECTED + NIHTBX_READING_UNCORRECTED + NIHTBX_LIST_UNCORRECTED + PEA_WISCV_TRS + NIHTBX_FLANKER_UNCORRECTED + NIHTBX_CARDSORT_UNCORRECTED + NIHTBX_PATTERN_UNCORRECTED + NIHTBX_PICTURE_UNCORRECTED + PEA_RAVLT_LD_TRIAL_VII_TC
#orthogonalize everything
Language_Reasoning ~~ 0*Cognitive_Flexibility
Language_Reasoning ~~ 0*Memory_Recall
Cognitive_Flexibility ~~ 0*Memory_Recall
g ~~ 0*Language_Reasoning
g ~~ 0*Cognitive_Flexibility
g ~~ 0*Memory_Recall
'
NeuroCogBiFac_fit <- lavaan::sem(model = NeuroCogBiFac,
data = processed_split_train,
estimator="MLR")
lavaan::summary(NeuroCogBiFac_fit, standardized = TRUE, rsquare = TRUE, fit.measures = TRUE)
## lavaan 0.6-10 ended normally after 61 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 27
##
## Number of observations 4105
##
## Model Test User Model:
## Standard Robust
## Test Statistic 75.999 70.005
## Degrees of freedom 18 18
## P-value (Chi-square) 0.000 0.000
## Scaling correction factor 1.086
## Yuan-Bentler correction (Mplus variant)
##
## Model Test Baseline Model:
##
## Test statistic 6726.755 6315.254
## Degrees of freedom 36 36
## P-value 0.000 0.000
## Scaling correction factor 1.065
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.991 0.992
## Tucker-Lewis Index (TLI) 0.983 0.983
##
## Robust Comparative Fit Index (CFI) 0.992
## Robust Tucker-Lewis Index (TLI) 0.983
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -49092.806 -49092.806
## Scaling correction factor 1.107
## for the MLR correction
## Loglikelihood unrestricted model (H1) -49054.806 -49054.806
## Scaling correction factor 1.099
## for the MLR correction
##
## Akaike (AIC) 98239.611 98239.611
## Bayesian (BIC) 98410.250 98410.250
## Sample-size adjusted Bayesian (BIC) 98324.456 98324.456
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.028 0.027
## 90 Percent confidence interval - lower 0.022 0.020
## 90 Percent confidence interval - upper 0.035 0.033
## P-value RMSEA <= 0.05 1.000 1.000
##
## Robust RMSEA 0.028
## 90 Percent confidence interval - lower 0.021
## 90 Percent confidence interval - upper 0.035
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.017 0.017
##
## Parameter Estimates:
##
## Standard errors Sandwich
## Information bread Observed
## Observed information based on Hessian
##
## Latent Variables:
## Estimate Std.Err z-value
## Language_Reasoning =~
## NIHTBX_PICVOCA 1.000
## NIHTBX_READING 0.829 0.167 4.972
## NIHTBX_LIST_UN 0.101 0.066 1.527
## PEA_WISCV_TRS 0.313 0.060 5.202
## Cognitive_Flexibility =~
## NIHTBX_FLANKER 1.000
## NIHTBX_CARDSOR 1.308 0.083 15.669
## NIHTBX_PATTERN 1.156 0.072 16.125
## Memory_Recall =~
## NIHTBX_PICTURE 1.000
## PEA_RAVLT_LD_T 0.426 0.021 20.129
## g =~
## NIHTBX_PICVOCA 1.000
## NIHTBX_READING 0.981 0.043 22.791
## NIHTBX_LIST_UN 1.207 0.060 20.107
## PEA_WISCV_TRS 1.018 0.054 18.842
## NIHTBX_FLANKER 0.700 0.054 13.073
## NIHTBX_CARDSOR 0.781 0.057 13.719
## NIHTBX_PATTERN 0.588 0.049 12.080
## NIHTBX_PICTURE 0.874 0.064 13.647
## PEA_RAVLT_LD_T 0.936 0.059 15.887
## P(>|z|) Std.lv Std.all
##
## 0.553 0.553
## 0.000 0.459 0.459
## 0.127 0.056 0.056
## 0.000 0.173 0.173
##
## 0.457 0.457
## 0.000 0.598 0.598
## 0.000 0.528 0.528
##
## 0.610 0.610
## 0.000 0.260 0.260
##
## 0.510 0.510
## 0.000 0.501 0.501
## 0.000 0.616 0.616
## 0.000 0.520 0.520
## 0.000 0.357 0.357
## 0.000 0.399 0.399
## 0.000 0.300 0.300
## 0.000 0.446 0.446
## 0.000 0.477 0.478
##
## Covariances:
## Estimate Std.Err z-value
## Language_Reasoning ~~
## Cogntv_Flxblty 0.000
## Memory_Recall 0.000
## Cognitive_Flexibility ~~
## Memory_Recall 0.000
## Language_Reasoning ~~
## g 0.000
## Cognitive_Flexibility ~~
## g 0.000
## Memory_Recall ~~
## g 0.000
## P(>|z|) Std.lv Std.all
##
## 0.000 0.000
## 0.000 0.000
##
## 0.000 0.000
##
## 0.000 0.000
##
## 0.000 0.000
##
## 0.000 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## .NIHTBX_PICVOCA 0.434 0.058 7.499 0.000
## .NIHTBX_READING 0.539 0.041 13.267 0.000
## .NIHTBX_LIST_UN 0.617 0.024 26.104 0.000
## .PEA_WISCV_TRS 0.700 0.019 37.374 0.000
## .NIHTBX_FLANKER 0.663 0.022 29.645 0.000
## .NIHTBX_CARDSOR 0.483 0.027 17.707 0.000
## .NIHTBX_PATTERN 0.631 0.024 26.486 0.000
## .NIHTBX_PICTURE 0.428 0.021 20.479 0.000
## .PEA_RAVLT_LD_T 0.704 0.019 36.235 0.000
## Language_Rsnng 0.306 0.061 4.993 0.000
## Cogntv_Flxblty 0.209 0.020 10.679 0.000
## Memory_Recall 0.372 0.021 17.814 0.000
## g 0.260 0.024 10.967 0.000
## Std.lv Std.all
## 0.434 0.434
## 0.539 0.539
## 0.617 0.617
## 0.700 0.700
## 0.663 0.664
## 0.483 0.484
## 0.631 0.631
## 0.428 0.429
## 0.704 0.704
## 1.000 1.000
## 1.000 1.000
## 1.000 1.000
## 1.000 1.000
##
## R-Square:
## Estimate
## NIHTBX_PICVOCA 0.566
## NIHTBX_READING 0.461
## NIHTBX_LIST_UN 0.383
## PEA_WISCV_TRS 0.300
## NIHTBX_FLANKER 0.336
## NIHTBX_CARDSOR 0.516
## NIHTBX_PATTERN 0.369
## NIHTBX_PICTURE 0.571
## PEA_RAVLT_LD_T 0.296
labels<-c("PIC\nVOCAB","READING\nRECOG","LIST\nWORKING\nMEMORY","MATRIX\nREASON",
"FLANKER","CARD\nSORT","PATTERN\nSPEED",
"SEQUENCE\nMEMORY","AUDI\nVERBAL\nDELAY",
"Language\nReasoning", "Cognitive\nFlexibility", "Memory\nRecall",
"g")
semPlot::semPaths(NeuroCogBiFac_fit,
"model",
whatLabels = "std",
bifactor = "g",
layout = "tree2",
nodeLabels=labels,
residuals = FALSE,
exoCov = FALSE,
edge.label.cex = 1,
sizeMan = 10,
sizeLat = 20,
edge.color="black"
# rotation=2
)
gfactor_train_output <- lavaan::lavPredict(NeuroCogBiFac_fit,
newdata = processed_split_train)%>%
tibble::as_tibble()%>%
mutate_all(as.double)%>%
rename(gfactor=g)%>%
mutate(SUBJECTKEY= processed_split_train$SUBJECTKEY)
gfactor_train_all <- left_join(split_train,gfactor_train_output,
by ="SUBJECTKEY") %>%
drop_na()%>%
IQR_remove(resp_vec = "gfactor")
gfactor_test_output <- lavaan::lavPredict(NeuroCogBiFac_fit,
newdata = processed_split_test)%>%
tibble::as_tibble()%>%
mutate_all(as.double)%>%
rename(gfactor=g)%>%
mutate(SUBJECTKEY= processed_split_test$SUBJECTKEY)
gfactor_test_all <- left_join(split_test,gfactor_test_output,
by ="SUBJECTKEY") %>%
drop_na()%>%
IQR_remove(resp_vec = "gfactor")
## print the size of training data after IRQ
dim(gfactor_train_all)
## [1] 2979 185
gfactor_train_all_subj <- left_join(gfactor_train_all, subj_info_all, by = subj_info)
## males
sum(gfactor_train_all_subj$SEX =="M")
## [1] 1510
## females
sum(gfactor_train_all_subj$SEX =="F")
## [1] 1468
## print the size of training data after IRQ
dim(gfactor_test_all)
## [1] 1006 185
gfactor_test_all_subj <- left_join(gfactor_test_all, subj_info_all, by = subj_info)
## males
sum(gfactor_test_all_subj$SEX =="M")
## [1] 509
## females
sum(gfactor_test_all_subj$SEX =="F")
## [1] 497
The data preprocessing contains two steps 1. IQR remove which is done by the “IQR_remove” function. 2. Scaling which is done in the following recipe function. The reason to split this two-step procedure into two functions is that there are some issues with the recipe function. Some models would fail if the column of the data frame changes when predicting. 3. the scale function is kept in the following recipe because scaling the data twice does not change anything.
cfa_resp_names <- c('gfactor')%>%
set_names()
formula_gfactor <- cfa_resp_names %>%
map(.,~as.formula(paste(.,paste(feature_names,collapse = "+"),sep="~")))
recipe_prep_gfactor <- function(resp_var,
formula_input,
train_input=data_train){
norm_recipe <- recipe( formula_input,
data = train_input) %>%
update_role(starts_with("roi_"),
new_role = "predictor")%>%
step_dummy(all_nominal()) %>%
prep(training = train_input, retain = TRUE)
return(norm_recipe)
}
recipe_gfactor <- map2(.x= cfa_resp_names,
.y = formula_gfactor,
~recipe_prep_gfactor(resp_var = .x,
formula_input = .y,
train_input = gfactor_train_all))
simple_all_IQR_gfactor <- map2(.x=cfa_resp_names,
.y = recipe_gfactor,
~resp_result(.x,
recipe_input = .y,
test_input = gfactor_test_all))
univariate_model_broom_gfactor <- map(simple_all_IQR_gfactor , "model_broom")
univariate_model_pred_gfactor <- map(simple_all_IQR_gfactor , "model_pred")
univariate_model_pred_gfactor <- map2(.x=univariate_model_pred_gfactor,
.y=cfa_resp_names,
function(pred_input=.x,
resp_input){
names_vec <- c(names(pred_input)[1:167],
resp_input)
names(pred_input) <- names_vec
return(pred_input)})
univariate_model_broom_gfactor <- univariate_model_broom_gfactor %>%
map(., ~ mutate(.,
FDR = p.adjust(p.value,
method = 'fdr'),
bonferroni= p.adjust(p.value,
method = 'bonferroni')))
univariate_model_fdr_gfactor <- univariate_model_broom_gfactor %>%
map(., ~ filter(.,FDR <= 0.05))
univariate_model_bonferroni_gfactor <- univariate_model_broom_gfactor %>%
map(., ~ filter(.,bonferroni <= 0.05))
median_univar_fdr_pred_gfactor <- pmap(list(cfa_resp_names,
univariate_model_fdr_gfactor,
univariate_model_pred_gfactor),
~median_extract(resp_input=..1,
model_input=..2,
pred_input=..3) )
median_univar_bonferroni_pred_gfactor <- pmap(list(cfa_resp_names,
univariate_model_bonferroni_gfactor,
univariate_model_pred_gfactor),
~median_extract(resp_input=..1,
model_input=..2,
pred_input=..3) )
OLS_fit_gfactor <- map2(.x=formula_gfactor,
.y=recipe_gfactor ,
~lm(.x,data = .y %>%
bake(new_data= NULL)))
OLS_predict_list_gfactor <- map2(.x=OLS_fit_gfactor,
.y=recipe_gfactor,
~predict(.x,
newdata = bake(prep(.y),
new_data = gfactor_test_all) )%>%
tibble::as_tibble() %>%
rename(model_pred = value)%>%
bind_cols(bake(prep(.y),
new_data = gfactor_test_all) ))
yardstick::rsq_trad(data = OLS_predict_list_gfactor$gfactor,
truth =.data$gfactor,
estimate =.data$model_pred)
## # A tibble: 1 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 rsq_trad standard 0.159
tidy_fit_ols_gfactor <-OLS_fit_gfactor %>% map(., ~broom::tidy(.))
tidy_fit_ols_gfactor <- tidy_fit_ols_gfactor %>% map(.,~filter(.,term != '(Intercept)' & p.value < 0.05 )%>%
mutate(.,roi = str_remove(term, 'roi_'))%>%
left_join( .,new_shorter_names,by="roi")%>%
mutate(.,direction = ifelse(estimate >= median(estimate), "big","small")))
cfa_resp_names %>% map(~ggplot(tidy_fit_ols_gfactor[[.]],aes(fct_reorder(roiShort, estimate), estimate,
ymin = estimate - 2 * std.error,
ymax = estimate + 2 * std.error)) +
geom_hline(yintercept = 0, linetype = 'dashed', col = 'grey60') +
geom_pointrange(fatten = 1.5, col = 'grey60') +
coord_flip() +
labs(x = 'Explanatory variables (Brain Regions)', y = 'Coefficients (± 2 std. errors)',
title = paste0('G-Factor\nOLS Coeffcients (p < .05)')) +
facet_wrap(~ direction, scales = 'free_y') +
theme(
axis.title.x = element_text(size = 15),
axis.text.x = element_text(size = 12),
axis.title.y = element_text(size = 15),
axis.text.y = element_text(size = 12),
legend.text = element_text(size = 10),
plot.title = element_text(size=16)) +
theme(
strip.background = element_blank(),
strip.text.x = element_blank()
))
## $gfactor
library(doFuture)
registerDoFuture()
plan(multisession(workers = 45))
start_time <- Sys.time()
enet_tune_gfactor <- map2(recipe_gfactor,
formula_gfactor,
~enet_tuning(recipe_input = .x,
formula_input = .y))
saveRDS(enet_tune_gfactor,
paste0(anotherFold,'working_memory_tasks/windows/enet_tune_gfactor_Dec_03_2021_rmse', '.RData'))
stop_time_gfactor <- Sys.time()
start_time <- Sys.time()
svm_rbf_tune_gfactor <-map2(recipe_gfactor,
formula_gfactor,
~SVM_RBF_tuning(recipe_input = .x,
formula_input = .y))
saveRDS(svm_rbf_tune_gfactor,
paste0(anotherFold,'working_memory_tasks/windows/SVM_RBF_tune_gfactor_Mar_21_2022', '.RData'))
stop_time <- Sys.time()
start_time <- Sys.time()
random_forest_tune_gfactor <- map2(recipe_gfactor,
formula_gfactor,
~random_forest_tuning(recipe_input = .x,
formula_input = .y))
saveRDS(random_forest_tune_gfactor,
paste0(anotherFold,'working_memory_tasks/windows/random_forest_tune_gfactor_Nov_04_2021', '.RData'))
stop_time <- Sys.time()
start_time <- Sys.time()
svm_linear_tune_gfactor <- map2(recipe_gfactor,
formula_gfactor,
~SVM_linear_tuning(recipe_input = .x,
formula_input = .y))
saveRDS(svm_linear_tune_gfactor,
paste0(anotherFold,'working_memory_tasks/windows/SVM_linear_tune_gfactor_Nov_04_2021', '.RData'))
stop_time <- Sys.time()
start_time <- Sys.time()
svm_poly_tune_gfactor <- map2(recipe_gfactor,
formula_gfactor,
~SVM_poly_tuning(recipe_input = .x,
formula_input = .y))
saveRDS(svm_poly_tune_gfactor,
paste0(anotherFold,'working_memory_tasks/windows/svm_poly_tune_gfactor_Nov_04_2021', '.RData'))
stop_time <- Sys.time()
start_time <- Sys.time()
xgboost_tune_gfactor <- map2(recipe_gfactor,
formula_gfactor,
~xgboost_tuning(recipe_input = .x,
formula_input = .y))
saveRDS(xgboost_tune_gfactor,
paste0(anotherFold,'working_memory_tasks/windows/xgboost_tune_gfactor_Nov_04_2021', '.RData'))
stop_time <- Sys.time()
get the best parameters from the grid search and then
get workflow, model fit and prediction with best grid paramters
enet_wfl_final_list_gfactor <- map(enet_tune_gfactor, "enet_wf_final")
best_enet_model_list_gfactor <- map(enet_tune_gfactor, "best_enet_model")
enet_final_fit_gfactor <-pmap(list(recipe_gfactor,
enet_wfl_final_list_gfactor,
formula_gfactor),
~model_final_fit(recipe_input = ..1,
wf_input = ..2,
formula_input = ..3,
model_name = "enet",
test_data = gfactor_test_all))
enet_final_fit_list_gfactor <- map(enet_final_fit_gfactor,
"enet_final_fit")
enet_predicted_list_gfactor <- map(enet_final_fit_gfactor,
"enet_predict")
yardstick::rmse(data = enet_predicted_list_gfactor$gfactor,
truth =.data$gfactor,
estimate =.data$model_predict )
## # A tibble: 1 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 rmse standard 0.901
yardstick::mae(data = enet_predicted_list_gfactor$gfactor,
truth =.data$gfactor,
estimate =.data$model_predict )
## # A tibble: 1 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 mae standard 0.720
yardstick::rsq_trad(data = enet_predicted_list_gfactor$gfactor,
truth =.data$gfactor,
estimate =.data$model_predict)
## # A tibble: 1 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 rsq_trad standard 0.187
matrix_train_gfactor <-bake(recipe_gfactor[[cfa_resp_names[1]]],
new_data = NULL)%>%
select(starts_with("roi_"))%>%
as.matrix()
resp_train_gfactor <- cfa_resp_names %>% map(.,~bake(recipe_gfactor[[.]],
new_data = NULL)%>%
select(-starts_with("roi_"))%>%
as.vector())
fit_explorer_gfactor <-cfa_resp_names %>%
future_map(.,
~eNetXplorer(x = matrix_train_gfactor ,
y = resp_train_gfactor[[.]][[.]],
alpha = best_enet_model_list_gfactor[[.]][["mixture"]],
n_fold = 10,
nlambda.ext = 1000,
nlambda = 1000,
scaled = TRUE,
QF_gaussian = "mse",
seed = 123456))
saveRDS(fit_explorer_gfactor, paste0(anotherFold,'working_memory_tasks/windows/fit_explorer_gfactor_Dec_03_2021_rmse', '.RData'))
lambdas_gfactor <- vector("list",
length = length(cfa_resp_names))
names(lambdas_gfactor)<- cfa_resp_names
lambdas_gfactor_best <- vector("list",
length = length(cfa_resp_names))
names(lambdas_gfactor_best)<- cfa_resp_names
summary_enet_gfactor <- vector("list",
length = length(cfa_resp_names))
names(summary_enet_gfactor)<- cfa_resp_names
for(i in 1:length(cfa_resp_names)){
lambdas_gfactor[[cfa_resp_names[i]]] <- fit_explorer_gfactor[[cfa_resp_names[i]]][["lambda_values"]]
lambdas_gfactor_best[[cfa_resp_names[i]]] <- fit_explorer_gfactor[[cfa_resp_names[i]]][["best_lambda"]]
summary_enet_gfactor[[cfa_resp_names[i]]]<-
as_tibble(summary(fit_explorer_gfactor[[cfa_resp_names[i]]])[[2]]) %>% slice(1)
}
summary_enet_gfactor %>% bind_rows() %>%
rename(.,
Alpha = alpha,
`Best-tune lambda` = lambda.max,
`MSE` = QF.est,
`P-value` = model.vs.null.pval) %>%
pander::pander(split.cell = 80, split.table = Inf, justify = 'left')
Alpha | Best-tune lambda | MSE | P-value |
---|---|---|---|
0.05 | 0.127 | -0.8105 | 0.0003998 |
alpha_vals_gfactor <- best_enet_model_list_gfactor %>%
map(.,~paste0("a",.[["mixture"]]))
cfa_resp_names%>%
map(.,
~qplot(fit_explorer_gfactor[[.]][["lambda_values"]][[alpha_vals_gfactor[[.]]]],
fit_explorer_gfactor[[.]][["lambda_QF_est"]][[alpha_vals_gfactor[[.]]]],
geom = 'line') +
scale_x_log10() +
geom_vline(xintercept = lambdas_gfactor_best[[.]], col = 'red', linetype = 'dashed') +
labs(x = NULL, y = NULL, title =. )
)
## $gfactor
coefs_enet_gfactor <- cfa_resp_names %>%
map(.,~extract_tibble(fit_explorer_gfactor[[.]],
alpha_index = paste0("a",best_enet_model_list_gfactor[[.]]$mixture)))
coefs_enet_gfactor <- coefs_enet_gfactor %>%
map(.,~filter(.,pvalue < 0.05) %>%
mutate(.,
type = ifelse(type == 'Null',
'Null permuted models',
'Target models'),
roi = str_remove(variable, 'roi_'))%>%
left_join( .,new_shorter_names,by="roi"))
roi_num_enet_gfactor <- coefs_enet_gfactor %>%
map(.,~dim(.)[1])
max_roi_enet_gfactor <- max(as.numeric(roi_num_enet_gfactor))
coefs_enet_gfactor <- coefs_enet_gfactor%>%map(.,~group_by(.,type))
coefs_enet_gfactor <- coefs_enet_gfactor%>%map(.,~nest(.,-type))
for(i in 1:length(cfa_resp_names)){
coefs_enet_gfactor[[cfa_resp_names[i]]][["data"]][[2]]<-
coefs_enet_gfactor[[cfa_resp_names[i]]][["data"]][[2]] %>%
mutate(direction = ifelse(coefs_enet_gfactor[[cfa_resp_names[i]]][["data"]][[2]]$wmean >= median(coefs_enet_gfactor[[cfa_resp_names[i]]][["data"]][[2]]$wmean)|roi_num_enet_gfactor[[cfa_resp_names[i]]] <= floor(max_roi_enet_gfactor/2),"big","small"))
coefs_enet_gfactor[[cfa_resp_names[i]]][["data"]][[1]] <-
coefs_enet_gfactor[[cfa_resp_names[i]]][["data"]][[1]] %>%
mutate(direction=coefs_enet_gfactor[[cfa_resp_names[i]]][["data"]][[2]]$direction)
}
coefs_enet_gfactor <- coefs_enet_gfactor %>%map(.,~unnest(.))
cfa_resp_names %>% map(.,~ggplot(coefs_enet_gfactor[[.]], aes(x = fct_reorder(roiShort, wmean),
y = wmean,
ymax = wmean + 2 * wsd,
ymin = wmean - 2 * wsd,
col = type)) +
geom_pointrange(fatten = 0.5, key_glyph = 'point') +
scale_y_continuous(labels = numform::ff_num(zero = 0, digits = 2)) +
scale_color_grey(start = 0.7, end = 0.5) +
coord_flip() +
guides(colour = guide_legend(override.aes = list(size = 2.5)))+
labs(x = 'Explanatory Variables (Brain Regions)',
y = 'Averaged Coefficient Across Models (±2 Std. dev)', col = 'Model type',
title = paste0("G-Factor","\nElastic Net Coefficients (p < .05)")) +
facet_wrap(~ direction, scales = 'free_y') +
scale_color_manual(values = c("#56B4E9", "black"),labels = c("Permuted Null", "Target")) +
theme_bw() +
theme(legend.title=element_blank()) +
theme(legend.position = "top") +
theme(
axis.title.x = element_text(size = 15),
axis.text.x = element_text(size = 12),
axis.title.y = element_text(size = 15),
axis.text.y = element_text(size = 12),
legend.text = element_text(size = 15),
plot.title = element_text(size=15)) +
theme(
strip.background = element_blank(),
strip.text.x = element_blank()
) + theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank())
)
## $gfactor
random_forest_wfl_final_list_gfactor <- map(random_forest_tune_gfactor,
"random_forest_wf_final")
best_random_forest_model_list_gfactor <- map(random_forest_tune_gfactor,
"best_random_forest_model")
random_forest_final_fit_gfactor <-pmap(list(recipe_gfactor,
random_forest_wfl_final_list_gfactor,
formula_gfactor),
~model_final_fit(test_data = gfactor_test_all,
recipe_input = ..1
,wf_input = ..2,
formula_input = ..3,
model_name = "random_forest"),
.options = furrr::furrr_options(seed = 123456))
random_forest_final_fit_list_gfactor <- map(random_forest_final_fit_gfactor, "random_forest_final_fit")
random_forest_predicted_list_gfactor <- map(random_forest_final_fit_gfactor, "random_forest_predict")
yardstick::mae(data = random_forest_predicted_list_gfactor$gfactor,
truth =.data$gfactor,
estimate =.data$model_predict )
## # A tibble: 1 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 mae standard 0.724
yardstick::rsq_trad(data = random_forest_predicted_list_gfactor$gfactor,
truth =.data$gfactor,
estimate =.data$model_predict)
## # A tibble: 1 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 rsq_trad standard 0.171
xgboost_wfl_final_list_gfactor <- map(xgboost_tune_gfactor, "xgboost_wf_final")
best_xgboost_model_list_gfactor <- map(xgboost_tune_gfactor, "best_xgboost_model")
xgboost_final_fit_gfactor <-future_pmap(list(recipe_gfactor,best_xgboost_model_list_gfactor, cfa_resp_names),
~xgboost_model_pred(
recipe_input=..1,
param_input=..2,
resp_input=..3),
.options = furrr::furrr_options(seed = 123456))
https://www.rdocumentation.org/packages/xgboost/versions/0.71.2/topics/predict.xgb.Booster
Setting predcontrib = TRUE allows to calculate contributions of each feature to individual predictions. For “gbtree” booster, feature contributions are SHAP values (Lundberg 2017) that sum to the difference between the expected output of the model and the current prediction (where the hessian weights are used to compute the expectations).
“BIAS” is the shapley values for the response variable.
xgboost_final_fit_list_gfactor <- map(xgboost_final_fit_gfactor, "xgboost_final_fit")
xgboost_predicted_list_gfactor <- map(xgboost_final_fit_gfactor, "xgboost_predict")
xgboost_predicted_train_list_gfactor <- map(xgboost_final_fit_gfactor, "xgboost_predict_train")
xgboost_shap_list_gfactor <- map(xgboost_final_fit_gfactor, "xgboost_shap_plot")
yardstick::mae(data = xgboost_predicted_list_gfactor$gfactor,
truth =.data$gfactor,
estimate =.data$model_predict )
## # A tibble: 1 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 mae standard 0.729
yardstick::rsq_trad(data = xgboost_predicted_list_gfactor$gfactor,
truth =.data$gfactor,
estimate =.data$model_predict)
## # A tibble: 1 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 rsq_trad standard 0.166
svm_linear_wfl_final_list_gfactor <- map(svm_linear_tune_gfactor, "svm_linear_wf_final")
best_svm_linear_model_list_gfactor <- map(svm_linear_tune_gfactor, "best_svm_linear_model")
svm_linear_final_fit_gfactor <-pmap(list(recipe_gfactor,svm_linear_wfl_final_list_gfactor, formula_gfactor),
~model_final_fit(test_data = gfactor_test_all,
recipe_input = ..1,
wf_input = ..2,
formula_input = ..3,
model_name = "svm_linear"))
svm_linear_final_fit_list_gfactor <- map(svm_linear_final_fit_gfactor, "svm_linear_final_fit")
svm_linear_predicted_list_gfactor <- map(svm_linear_final_fit_gfactor, "svm_linear_predict")
yardstick::mae(data = svm_linear_predicted_list_gfactor$gfactor,
truth =.data$gfactor,
estimate =.data$model_predict )
## # A tibble: 1 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 mae standard 0.720
yardstick::rsq_trad(data = svm_linear_predicted_list_gfactor$gfactor,
truth =.data$gfactor,
estimate =.data$model_predict)
## # A tibble: 1 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 rsq_trad standard 0.182
SVM_RBF_wfl_final_list_gfactor <- map(SVM_RBF_tune_gfactor, "svm_rbf_wf_final")
best_SVM_RBF_model_list_gfactor <- map(SVM_RBF_tune_gfactor, "best_svm_rbf_model")%>% print()
## $gfactor
## # A tibble: 1 x 4
## cost rbf_sigma margin .config
## <dbl> <dbl> <dbl> <chr>
## 1 1.64 0.000464 0.193 Preprocessor1_Model4301
SVM_RBF_final_fit_gfactor <-pmap(list(recipe_gfactor,SVM_RBF_wfl_final_list_gfactor,formula_gfactor),
~model_final_fit(test_data = gfactor_test_all,
recipe_input = ..1,
wf_input = ..2,
formula_input = ..3,
model_name = "SVM_RBF"))
SVM_RBF_final_fit_list_gfactor <- map(SVM_RBF_final_fit_gfactor, "SVM_RBF_final_fit")
SVM_RBF_predicted_list_gfactor <- map(SVM_RBF_final_fit_gfactor, "SVM_RBF_predict")
yardstick::mae(data = SVM_RBF_predicted_list_gfactor$gfactor,
truth =.data$gfactor,
estimate =.data$model_predict )
## # A tibble: 1 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 mae standard 0.717
yardstick::rsq_trad(data = SVM_RBF_predicted_list_gfactor$gfactor,
truth =.data$gfactor,
estimate =.data$model_predict)
## # A tibble: 1 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 rsq_trad standard 0.188
svm_poly_wfl_final_list_gfactor <- map(svm_poly_tune_gfactor, "svm_poly_wf_final")
best_svm_poly_model_list_gfactor <- map(svm_poly_tune_gfactor, "best_svm_poly_model")
svm_poly_final_fit_gfactor <-pmap(list(recipe_gfactor,svm_poly_wfl_final_list_gfactor, formula_gfactor),
~model_final_fit(test_data = gfactor_test_all,
recipe_input = ..1,
wf_input = ..2,
formula_input = ..3,
model_name = "svm_poly"))
svm_poly_final_fit_list_gfactor <- map(svm_poly_final_fit_gfactor, "svm_poly_final_fit")
svm_poly_predicted_list_gfactor <- map(svm_poly_final_fit_gfactor, "svm_poly_predict")
yardstick::mae(data = svm_poly_predicted_list_gfactor$gfactor,
truth =.data$gfactor,
estimate =.data$model_predict )
## # A tibble: 1 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 mae standard 0.720
yardstick::rsq_trad(data = svm_poly_predicted_list_gfactor$gfactor,
truth =.data$gfactor,
estimate =.data$model_predict)
## # A tibble: 1 x 3
## .metric .estimator .estimate
## <chr> <chr> <dbl>
## 1 rsq_trad standard 0.183
The following function computes the performance statistcs for one algorithm only.
perfmatrics <-function(data,i){
cor_model <- cor(data$model_pred[i],
data$model_resp[i],
use = "pairwise.complete.obs")
tradrsq_model <- yardstick::rsq_trad(data=data,
truth=.data$model_resp[i],
estimate=.data$model_pred[i])
mae_model <- yardstick::mae(data =data,
truth=.data$model_resp[i],
estimate=.data$model_pred[i])
rmse_model <- yardstick::rmse(data =data,
truth=.data$model_resp[i],
estimate=.data$model_pred[i])
return(c(cor_model, tradrsq_model$.estimate , mae_model$.estimate, rmse_model$.estimate))
}
5000 times and compute the performance statistcs with the above function
set.seed(123456)
boot_result_list <- function(model_pred,
resp_var){
model_results <- select(model_pred,
-starts_with("roi_"))
names(model_results) <- c("model_pred","model_resp")
# library(doSNOW)
#cl <- makeCluster(c("localhost","localhost"),
# type = "SOCK")
#registerDoSNOW(cl=cl)
DiffResults <- boot::boot(data = model_results,
statistic = perfmatrics,
R = 5000,
# parallel="snow",
# ncpus=20,
#cl=cl
)
return(DiffResults)
}
bootstrap function for univariate
the procedure of this function is
1. select the significant rois (that passed fdr or bonferroni)
2. within each roi, bootstrap 5000 times
3. get performance statistcs from bootstrap of each roi
4. group all of the performance statistcs together for all significant
rois
set.seed(123456)
boot_results_process <- function(boot_input,metric_idx){
boot_results <- boot_input[,metric_idx]
return(boot_results)}
uni_performance_all <- function(resp_input,
model_input,
pred_input,
univar_input){
roi_left <- model_input[["roi"]]
pred_selected <- pred_input %>%
select(all_of(roi_left),
all_of(resp_input))
pred_list <- roi_left %>%
map(.,~select(pred_input, ., resp_input))
pred_list <- pred_list%>%
map(.,function(pred_input=.){
names(pred_input)= c("model_pred", resp_input)
return(pred_input)
})
boot_list <- pred_list %>%
furrr::future_map(.,~boot_result_list(model_pred = .,
resp_var =resp_input),
.options = furrr::furrr_options(seed = 123456))
boot_results <- map(boot_list,"t")
boot_corr <- map(boot_results,
~boot_results_process(boot_input = .,
metric_idx = 1))%>%
do.call(cbind,.) %>%
as.vector()%>%
tibble::as_tibble()%>%
mutate(modality = rep(univar_input,5000*length(roi_left)))
boot_tradrsq <- map(boot_results,
~boot_results_process(boot_input = .,
metric_idx = 2))%>%
do.call(rbind,.)%>%
as.vector()%>%
tibble::as_tibble()%>%
mutate(modality = rep(univar_input,5000*length(roi_left)))
boot_mae <- map(boot_results,
~boot_results_process(boot_input = .,
metric_idx = 3))%>%
do.call(rbind,.)%>%
as.vector()%>%
tibble::as_tibble()%>%
mutate(modality = rep(univar_input,5000*length(roi_left)))
boot_rmse <- map(boot_results,
~boot_results_process(boot_input = .,
metric_idx = 4))%>%
do.call(rbind,.)%>%
as.vector()%>%
tibble::as_tibble()%>%
mutate(modality = rep(univar_input,5000*length(roi_left)))
return( list (corr = boot_corr,
tradrsq = boot_tradrsq,
mae= boot_mae,
rmse= boot_rmse))
}
univar_fdr_boot <-furrr::future_pmap(list(resp_names,
univariate_model_fdr,
univariate_model_pred),
~uni_performance_all(resp_input=..1,
model_input=..2,
pred_input=..3,
univar_input = "fdr"),
.options = furrr::furrr_options(seed = 123456) )
univar_bonferroni_boot <- furrr::future_pmap(list(resp_names,
univariate_model_bonferroni,
univariate_model_pred),
~uni_performance_all(resp_input=..1,
model_input=..2,
pred_input=..3,
univar_input = "bonferroni") ,
.options = furrr::furrr_options(seed = 123456))
#stopCluster(cl)
uni_boot <- list(fdr= univar_fdr_boot,
bonferroni = univar_bonferroni_boot)
#library(doSNOW)
#cl <- makeCluster(c("localhost","localhost"),
# type = "SOCK")
#registerDoSNOW(cl=cl)
boot_ols <- furrr::future_pmap(list(resp_names,
OLS_predict_list),
~boot_result_list(
resp_var = ..1,
model_pred = ..2),
.options = furrr::furrr_options(seed = 123456))
boot_enet <-furrr::future_pmap(list(resp_names,
enet_predicted_list),
~boot_result_list(
resp_var = ..1,
model_pred = ..2),
.options = furrr::furrr_options(seed = 123456))
boot_svm_linear <- furrr::future_pmap(list(resp_names,
svm_linear_predicted_list),
~boot_result_list(
resp_var = ..1,
model_pred = ..2),
.options = furrr::furrr_options(seed = 123456))
boot_random_forest <- furrr::future_pmap(list(resp_names,
random_forest_predicted_list),
~boot_result_list(
resp_var = ..1,
model_pred = ..2),
.options = furrr::furrr_options(seed = 123456))
boot_xgboost <- furrr::future_pmap(list(resp_names,xgboost_predicted_list),
~boot_result_list(
resp_var = ..1,
model_pred = ..2),
.options = furrr::furrr_options(seed = 123456))
boot_svm_RBF <- furrr::future_pmap(list(resp_names,SVM_RBF_predicted_list),
~boot_result_list(
resp_var = ..1,
model_pred = ..2),
.options = furrr::furrr_options(seed = 123456))
boot_svm_poly <- furrr::future_pmap(list(resp_names,svm_poly_predicted_list),
~boot_result_list(
resp_var = ..1,
model_pred = ..2),
.options = furrr::furrr_options(seed = 123456))
bootstrapping_list <- list(OLS = boot_ols,
enet = boot_enet,
svm_linear = boot_svm_linear,
random_forest = boot_random_forest,
xgboost = boot_xgboost,
svm_RBF = boot_svm_RBF,
svm_ploy= boot_svm_poly)
saveRDS(bootstrapping_list, paste0(anotherFold,'working_memory_tasks/bootstrapping_results_all_April_22_2022_rmse', '.RData'))
#stopCluster(cl)
group the bootstrapped performance statistics and plot them across all the working memory tasks
algorithm_vec <- names(bootstrapping_list)
algorithm_names <- tibble(vec_names = algorithm_vec,
plotting_names = c("OLS",
"Elastic\nNet",
"Linear\nSVM",
"Random\nForest",
"Xgboost",
"RBF\nSVM",
"Polynomial\nSVM"))
boot_across_algorithms <- function(resp_input, boot_input){
one_resp_cor <- map(.x= algorithm_vec,
function(algorithm_input=.x){
one_algotithm_cor <- boot_input[[algorithm_input]][[resp_input]]$t[,1]%>%
tibble::as_tibble()%>%
mutate(modality = rep(algorithm_names$plotting_names[[which(algorithm_names$vec_names==algorithm_input)]],5000))
})%>%
do.call(rbind,.)
one_resp_tradrsq <- map(.x= algorithm_vec,
function(algorithm_input){
one_algotithm_tradrsq <- boot_input[[algorithm_input]][[resp_input]]$t[,2]%>%
tibble::as_tibble()%>%
mutate(modality = rep(algorithm_names$plotting_names[[which(algorithm_names$vec_names==algorithm_input)]],5000))
})%>%
do.call(rbind,.)
one_resp_mae <- map(.x= algorithm_vec,
function(algorithm_input){
one_algotithm_mae <-
boot_input[[algorithm_input]][[resp_input]]$t[,3]%>%
tibble::as_tibble()%>%
mutate(modality = rep(algorithm_names$plotting_names[[which(algorithm_names$vec_names==algorithm_input)]], 5000))
})%>%
do.call(rbind,.)
one_resp_rmse <- map(.x= algorithm_vec, function(algorithm_input){
one_algotithm_tradrsq <- boot_input[[algorithm_input]][[resp_input]]$t[,4]%>%
tibble::as_tibble()%>%
mutate(modality = rep(algorithm_names$plotting_names[[which(algorithm_names$vec_names==algorithm_input)]], 5000))
})%>%do.call(rbind,.)
return(list(correlation = one_resp_cor,
tradrsq = one_resp_tradrsq,
mae= one_resp_mae,
rmse = one_resp_rmse))
}
bootstrapping_resp_list <- map(.x= resp_names ,
~boot_across_algorithms(resp_input = .x,
boot_input = bootstrapping_list) )
boot_cbind <- function(index_input_1,
index_input_2,
boot_uni_list,
boot_resp_input){
boot_output_other <- map(boot_resp_input,
index_input_1)
boot_output_fdr <- map(boot_uni_list[["fdr"]],
index_input_2)
boot_output_bonf <- map(boot_uni_list[["bonferroni"]],
index_input_2)
boot_output_all <- pmap(list(boot_output_other,
boot_output_fdr,
boot_output_bonf),
~ rbind(boot_output_other=..1,
boot_output_fdr=..2,
boot_output_bonf=..3))
return(boot_output_all)
}
uni_recode <- function(data_input){
data_input$modality <- recode(data_input$modality,
fdr= "FDR",
bonferroni = "Bonferroni")
return(data_input)
}
boot_cor <- boot_cbind(index_input_1 = "correlation",
index_input_2 = "corr",
boot_uni_list = uni_boot,
boot_resp_input = bootstrapping_resp_list)
boot_cor <- boot_cor %>%
map(.,~uni_recode(data_input = .))
boot_tradrsq <- boot_cbind(index_input_1 = "tradrsq",
index_input_2 = "tradrsq",
boot_uni_list = uni_boot,
boot_resp_input = bootstrapping_resp_list)
boot_tradrsq <- boot_tradrsq %>%
map(.,~uni_recode(data_input = .))
boot_rmse <- boot_cbind(index_input_1 = "rmse",
index_input_2 = "rmse",
boot_uni_list = uni_boot,
boot_resp_input = bootstrapping_resp_list)
boot_rmse <- boot_rmse %>% map(.,~uni_recode(data_input = .))
boot_mae <- boot_cbind(index_input_1 = "mae",
index_input_2 = "mae",
boot_uni_list = uni_boot,
boot_resp_input = bootstrapping_resp_list)
boot_mae <- boot_mae %>%
map(.,~uni_recode(data_input = .))
change_factor <- function(data_input){
data_input <- data_input %>%
mutate(modality = factor(modality,
levels =c ("FDR","Bonferroni","OLS","Elastic\nNet",
"Random\nForest","Xgboost", "Linear\nSVM",
"Polynomial\nSVM" ,"RBF\nSVM")))
return(data_input)
}
density_plot <- function(data_input, metric_input){
data_input %>%
ggplot(aes(y = modality, x = value)) +
stat_halfeye(aes(fill = stat(cut_cdf_qi(cdf)))) +
scale_fill_brewer(direction = -1) +
labs(x = NULL,
y = NULL,
title = paste0(metric_input))+
theme(legend.position = "none")
}
interval_plot <- function(data_input, metric_input){
data_input %>%
ggplot(aes(y = modality, x = value)) +
stat_interval() +
scale_color_brewer() +
labs(x = NULL,
y = NULL,
title = paste0(metric_input))+
theme(legend.position = "none")
}
boot_cor <- boot_cor %>% map(.,~change_factor(data_input = .))
boot_tradrsq <- boot_tradrsq %>% map(.,~change_factor(data_input = .))
boot_mae <- boot_mae %>% map(.,~change_factor(data_input = .))
boot_rmse <- boot_rmse %>% map(.,~change_factor(data_input = .))
metric_vec <- c("Pearson's correlation","Tradional r squared",
"Mean Absolute Error","Root Mean Square Error")
metrics_plot_all <- function(resp_input){
metric_list <- list(corr=boot_cor[[resp_input]],
tradrsq = boot_tradrsq[[resp_input]],
mae=boot_mae[[resp_input]],
rmse=boot_rmse[[resp_input]] )
plot_list <- map2(.x= metric_vec,
.y = metric_list,
~interval_plot(data_input = .y,
metric_input = .x))
plot_list[[1]] <- plot_list[[1]]+
theme(axis.title.y=element_text(size=10),
axis.text.y=element_text(size=10))
plot_list[[3]] <- plot_list[[3]]+
theme(axis.title.y=element_text(size=10),
axis.text.y=element_text(size=10))
plot_list[[2]] <- plot_list[[2]]+
theme(axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank())
plot_list[[4]] <- plot_list[[4]]+
theme(axis.title.y=element_blank(),
axis.text.y=element_blank(),
axis.ticks.y=element_blank())
title_plot <- ggdraw() +
draw_label(
paste0("Bootstrapped performance metrics of ", resp_var_plotting$longer_name[which(resp_var_plotting$response==resp_input)] ) ,
fontface = 'bold',
x = 0,
hjust = 0
) +
theme(
# add margin on the left of the drawing canvas,
# so title is aligned with left edge of first plot
plot.margin = margin(0, 0, 0, 7)
)
metric_figure<- plot_grid(title_plot,
plot_grid(plotlist = plot_list),
nrow = 2 ,
rel_heights = c(0.1, 1))
return(metric_figure)
}
resp_names %>% map(.,
~metrics_plot_all(resp_input = .))%>%
print()
## $TFMRI_NB_ALL_BEH_C2B_RATE
##
## $NIHTBX_PICVOCAB_UNCORRECTED
##
## $NIHTBX_FLANKER_UNCORRECTED
##
## $NIHTBX_LIST_UNCORRECTED
##
## $NIHTBX_CARDSORT_UNCORRECTED
##
## $NIHTBX_PATTERN_UNCORRECTED
##
## $NIHTBX_PICTURE_UNCORRECTED
##
## $NIHTBX_READING_UNCORRECTED
##
## $LMT_SCR_PERC_CORRECT
##
## $PEA_RAVLT_LD_TRIAL_VII_TC
##
## $PEA_WISCV_TRS
the same procedure with all the other working memory tasks
# stuck
univar_fdr_boot_gfactor <- pmap(list(cfa_resp_names,
univariate_model_fdr_gfactor,
univariate_model_pred_gfactor),
~uni_performance_all(resp_input=..1,
model_input=..2,
pred_input=..3,
univar_input = "fdr") )
univar_bonferroni_boot_gfactor <- pmap(list(cfa_resp_names,
univariate_model_bonferroni_gfactor,
univariate_model_pred_gfactor),
~uni_performance_all(resp_input=..1,
model_input=..2,
pred_input=..3,
univar_input = "bonferroni") )
uni_boot_gfactor <- list(fdr= univar_fdr_boot_gfactor,
bonferroni = univar_bonferroni_boot_gfactor)
saveRDS(uni_boot_gfactor, paste0(anotherFold,'working_memory_tasks/windows/uni_boot_gfactor_Nov_12_2021', '.RData'))
# library(doSNOW)
#cl <- makeCluster(c("localhost","localhost"),
# type = "SOCK")
#registerDoSNOW(cl=cl)
boot_ols_gfactor <- furrr::future_pmap(list(cfa_resp_names,OLS_predict_list_gfactor),
~boot_result_list(resp_var = ..1,
model_pred = ..2),
.options = furrr::furrr_options(seed = 123456))
boot_enet_gfactor <- furrr::future_pmap(list(cfa_resp_names,enet_predicted_list_gfactor),
~boot_result_list(resp_var = ..1,
model_pred = ..2),
.options = furrr::furrr_options(seed = 123456))
boot_svm_linear_gfactor <- furrr::future_pmap(list(cfa_resp_names,svm_linear_predicted_list_gfactor),
~boot_result_list(resp_var = ..1,
model_pred = ..2),
.options = furrr::furrr_options(seed = 123456))
boot_random_forest_gfactor <- furrr::future_pmap(list(cfa_resp_names,random_forest_predicted_list_gfactor),
~boot_result_list(resp_var = ..1,
model_pred = ..2),
.options = furrr::furrr_options(seed = 123456))
boot_xgboost_gfactor <- furrr::future_pmap(list(cfa_resp_names,xgboost_predicted_list_gfactor),
~boot_result_list(resp_var = ..1,
model_pred = ..2),
.options = furrr::furrr_options(seed = 123456))
boot_svm_RBF_gfactor <- furrr::future_pmap(list(cfa_resp_names,SVM_RBF_predicted_list_gfactor),
~boot_result_list(resp_var = ..1,
model_pred = ..2),
.options = furrr::furrr_options(seed = 123456))
boot_svm_poly_gfactor <- furrr::future_pmap(list(cfa_resp_names,svm_poly_predicted_list_gfactor),
~boot_result_list(resp_var = ..1,
model_pred = ..2),
.options = furrr::furrr_options(seed = 123456))
#stopCluster(cl)
bootstrapping_list_gfactor <- list(OLS = boot_ols_gfactor,
enet = boot_enet_gfactor,
svm_linear = boot_svm_linear_gfactor,
random_forest = boot_random_forest_gfactor,
xgboost = boot_xgboost_gfactor,
svm_RBF = boot_svm_RBF_gfactor,
svm_ploy= boot_svm_poly_gfactor)
saveRDS(bootstrapping_list_gfactor, paste0(anotherFold,'working_memory_tasks/windows/bootstrapping_list_gfactor_Mar_22_2022_rmse', '.RData'))
bootstrapping_resp_list_gfactor <- map(.x= cfa_resp_names ,
~boot_across_algorithms(resp_input = .x,
boot_input = bootstrapping_list_gfactor) )
boot_cor_gfactor <- boot_cbind(index_input_1 = "correlation",
index_input_2 = "corr",
boot_uni_list = uni_boot_gfactor,
boot_resp_input = bootstrapping_resp_list_gfactor)
boot_cor_gfactor <- boot_cor_gfactor %>% map(.,~uni_recode(data_input = .))
boot_tradrsq_gfactor <- boot_cbind(index_input_1 = "tradrsq",
index_input_2 = "tradrsq",
boot_uni_list = uni_boot_gfactor,
boot_resp_input = bootstrapping_resp_list_gfactor)
boot_tradrsq_gfactor <- boot_tradrsq_gfactor %>% map(.,~uni_recode(data_input = .))
boot_rmse_gfactor <- boot_cbind(index_input_1 = "rmse",
index_input_2 = "rmse",
boot_uni_list = uni_boot_gfactor,
boot_resp_input = bootstrapping_resp_list_gfactor)
boot_rmse_gfactor <- boot_rmse_gfactor %>% map(.,~uni_recode(data_input = .))
boot_mae_gfactor <- boot_cbind(index_input_1 = "mae",
index_input_2 = "mae",
boot_uni_list = uni_boot_gfactor,
boot_resp_input = bootstrapping_resp_list_gfactor)
boot_mae_gfactor <- boot_mae_gfactor %>% map(.,~uni_recode(data_input = .))
boot_cor_gfactor_tibble <- boot_cor_gfactor[["gfactor"]]%>%
tibble::as_tibble()%>%
mutate(response = "gfactor")
boot_tradrsq_gfactor_tibble <- boot_tradrsq_gfactor[["gfactor"]]%>%
tibble::as_tibble()%>%
mutate(response = "gfactor")
boot_rmse_gfactor_tibble <- boot_rmse_gfactor[["gfactor"]]%>%
tibble::as_tibble()%>%
mutate(response = "gfactor")
boot_mae_gfactor_tibble <- boot_mae_gfactor[["gfactor"]]%>%
tibble::as_tibble()%>%
mutate(response = "gfactor")
combine gfactor and all other working memory tasks and plot them into one plot
boot_list_processing <- function(resp_input ,data_input ){
resp_short_name <- resp_var_plotting$short_name[which(resp_var_plotting$response==resp_input)]
output_tibble <-data_input %>%
mutate(response = resp_short_name)
return(output_tibble)
}
boot_cor_tibble <- map2(.x=resp_names,
.y= boot_cor,
~boot_list_processing(resp_input=.x,
data_input=.y))%>%
do.call(rbind,.)
boot_tradrsq_tibble <- map2(.x=resp_names,
.y= boot_tradrsq,
~boot_list_processing(resp_input=.x,
data_input=.y))%>%
do.call(rbind,.)
boot_mae_tibble <- map2(.x=resp_names,
.y= boot_mae,
~boot_list_processing(resp_input=.x,
data_input=.y))%>%
do.call(rbind,.)
boot_rmse_tibble <- map2(.x=resp_names,
.y= boot_rmse,
~boot_list_processing(resp_input=.x,
data_input=.y))%>%
do.call(rbind,.)
boot_cor_all <- bind_rows(boot_cor_tibble,
boot_cor_gfactor_tibble)%>%
mutate(resp_factor= as.factor(response))%>%
mutate(resp_factor = factor(response,
levels =c("Pattern Speed", "Audi Verbal",
"Flanker","Seq Memory",
"Card Sort", # "Cog Flex",
"Little Man",
"List Work Mem","Matrix Reason",
"Reading Recog","Pic Vocab",
"2-back Work Mem","gfactor" )))%>%
mutate(algorithm = modality)%>%
mutate(algorithm = factor(algorithm,levels =c ("FDR","Bonferroni",
"OLS","Elastic\nNet",
"Random\nForest","Xgboost",
"Linear\nSVM",
"Polynomial\nSVM" ,"RBF\nSVM")))
boot_tradrsq_all <- bind_rows(boot_tradrsq_tibble, boot_tradrsq_gfactor_tibble)%>%
mutate(resp_factor= as.factor(response))%>%
mutate(resp_factor = factor(response,levels =c("Pattern Speed", "Audi Verbal",
"Flanker","Seq Memory",
"Card Sort", # "Cog Flex",
"Little Man",
"List Work Mem","Matrix Reason",
"Reading Recog","Pic Vocab",
"2-back Work Mem","gfactor" )))%>%
mutate(algorithm = modality)%>%
mutate(algorithm = factor(algorithm,levels =c ("FDR","Bonferroni","OLS","Elastic\nNet",
"Random\nForest","Xgboost", "Linear\nSVM",
"Polynomial\nSVM" ,"RBF\nSVM")))
boot_rmse_all <- bind_rows(boot_rmse_tibble, boot_rmse_gfactor_tibble)%>%
mutate(resp_factor= as.factor(response))%>%
mutate(resp_factor = factor(response,levels =c("Pattern Speed", "Audi Verbal",
"Flanker","Seq Memory",
"Card Sort", # "Cog Flex",
"Little Man",
"List Work Mem","Matrix Reason",
"Reading Recog","Pic Vocab",
"2-back Work Mem","gfactor" )))%>%
mutate(algorithm = modality)%>%
mutate(algorithm = factor(algorithm,levels =c ("FDR","Bonferroni",
"OLS","Elastic\nNet",
"Random\nForest","Xgboost",
"Linear\nSVM",
"Polynomial\nSVM" ,"RBF\nSVM")))
boot_mae_all <- bind_rows(boot_mae_tibble, boot_mae_gfactor_tibble)%>%
mutate(resp_factor= as.factor(response))%>%
mutate(resp_factor = factor(response,levels =c("Pattern Speed", "Audi Verbal",
"Flanker","Seq Memory",
"Card Sort", # "Cog Flex",
"Little Man",
"List Work Mem","Matrix Reason",
"Reading Recog","Pic Vocab",
"2-back Work Mem","gfactor" )))%>%
mutate(algorithm = modality)%>%
mutate(algorithm = factor(algorithm,levels =c ("FDR","Bonferroni",
"OLS","Elastic\nNet",
"Random\nForest","Xgboost",
"Linear\nSVM",
"Polynomial\nSVM" ,"RBF\nSVM")))
boot_all_metrix <- list(Correlation= boot_cor_all,
Traditional_Rsquare= boot_tradrsq_all,
MAE = boot_mae_all,
RMSE= boot_rmse_all)
color_boot_plot <- c(RColorBrewer::brewer.pal(n = 8, name = "Dark2"),
RColorBrewer::brewer.pal(n = 8, name = "Reds")[8])
boot_plot_list <- map2(.x=boot_all_metrix,
.y = metric_vec,
~ggplot(data=.x,
aes(y = value,
x = resp_factor,
color= algorithm)) +
ggtitle(.y)+
stat_pointinterval(position = position_dodge(width = 2,
preserve = "single"))+
geom_hline(yintercept = 0, color = "grey55", linetype = "dashed",size=1.5) +
coord_flip()+
theme(plot.title = element_text(size=15),
axis.title.x = element_blank(),
axis.title.y = element_blank(),
axis.text.x = element_text(size = 12),
axis.text.y = element_text(size=12),
legend.position = "bottom",
legend.text=element_text(size=12),
legend.title=element_text(size=15))+
guides(color = guide_legend(override.aes = list(size = 10)))+
scale_color_manual(values=color_boot_plot,
labels = c ("FDR","Bonferroni",
"OLS","Elastic\nNet",
"Random\nForest","Xgboost",
"Linear\nSVM",
"Polynomial\nSVM" ,"RBF\nSVM"))
)
boot_plot_list[3:4] <- map2(.x=boot_all_metrix[3:4],
.y = metric_vec[3:4],
~ggplot(data=.x,
aes(y = value,
x = resp_factor,
color= algorithm)) +
ggtitle(.y)+
stat_pointinterval(position = position_dodge(width = 2,
preserve = "single"))+
coord_flip()+
theme(plot.title = element_text(size=15),
axis.title.x = element_blank(),
axis.title.y = element_blank(),
axis.text.x = element_text(size = 12),
axis.text.y = element_text(size=12),
legend.position = "bottom",
legend.text=element_text(size=12),
legend.title=element_text(size=15))+
guides(color = guide_legend(override.aes = list(size = 10)))+
scale_color_manual(values=color_boot_plot,
labels = c ("FDR","Bonferroni",
"OLS","Elastic\nNet",
"Random\nForest","Xgboost",
"Linear\nSVM",
"Polynomial\nSVM" ,"RBF\nSVM"))
)
get_legend<-function(a.gplot){
tmp <- ggplot_gtable(ggplot_build(a.gplot))
leg <- which(sapply(tmp$grobs,
function(x) x$name) == "guide-box")
legend <- tmp$grobs[[leg]]
return(legend)}
boot_plot_legend <- get_legend(boot_plot_list[[1]])
title_boot_plot <- ggdraw() +
draw_label(
"Bootstrapped Distribution of Predictive Performance",
fontface = 'bold',
x = 0,
hjust = 0,
size=21
) +
theme(
# add margin on the left of the drawing canvas,
# so title is aligned with left edge of first plot
plot.margin = margin(0, 0, 0, 3)
)
plot_grid(title_boot_plot,ggpubr::ggarrange(plotlist =boot_plot_list,
ncol = 2,
nrow = 2,
common.legend = TRUE,
legend = "bottom",
legend.grob = boot_plot_legend),nrow = 2 , rel_heights = c(0.2, 1))
plot bootstrapped intervals without univariate
boot_all_metrixnouni <- map(boot_all_metrix, ~filter(.x,.data[["algorithm"]]!="FDR")%>%
filter(.data[["algorithm"]]!="Bonferroni"))
boot_plot_listnouni <- map2(.x=boot_all_metrixnouni,
.y = metric_vec,
~ggplot(data=.x,
aes(y = value,
x = resp_factor,
color= algorithm)) +
ggtitle(.y)+
stat_pointinterval(position = position_dodge(width = 2,
preserve = "single"))+
geom_hline(yintercept = 0, color = "grey55", linetype = "dashed",size=1.5) +
coord_flip()+
theme(plot.title = element_text(size=15),
axis.title.x = element_blank(),
axis.title.y = element_blank(),
axis.text.x = element_text(size = 12),
axis.text.y = element_text(size=12),
legend.position = "bottom",
legend.text=element_text(size=12),
legend.title=element_text(size=15))+
guides(color = guide_legend(override.aes = list(size = 10)))+
scale_color_manual(values=color_boot_plot[-c(1,2)],
labels = c ("OLS","Elastic\nNet",
"Random\nForest","Xgboost",
"Linear\nSVM",
"Polynomial\nSVM" ,"RBF\nSVM"))
)
boot_plot_listnouni[3:4] <- map2(.x=boot_all_metrixnouni[3:4],
.y = metric_vec[3:4],
~ggplot(data=.x,
aes(y = value,
x = resp_factor,
color= algorithm)) +
ggtitle(.y)+
stat_pointinterval(position = position_dodge(width = 2,
preserve = "single"))+
coord_flip()+
theme(plot.title = element_text(size=15),
axis.title.x = element_blank(),
axis.title.y = element_blank(),
axis.text.x = element_text(size = 12),
axis.text.y = element_text(size=12),
legend.position = "bottom",
legend.text=element_text(size=12),
legend.title=element_text(size=15))+
guides(color = guide_legend(override.aes = list(size = 10)))+
scale_color_manual(values=color_boot_plot[-c(1,2)],
labels = c ("OLS","Elastic\nNet",
"Random\nForest","Xgboost",
"Linear\nSVM",
"Polynomial\nSVM" ,"RBF\nSVM"))
)
boot_plot_legendnouni <- get_legend(boot_plot_listnouni[[1]])
plot_grid(title_boot_plot,ggpubr::ggarrange(plotlist =boot_plot_listnouni,
ncol = 2,
nrow = 2,
common.legend = TRUE,
legend = "bottom",
legend.grob = boot_plot_legendnouni),nrow = 2 , rel_heights = c(0.2, 1))
resp_vec <- unique(boot_all_metrix[["Correlation"]][["response"]])
modality_vec <- unique(boot_all_metrix[["Correlation"]][["modality"]])
boot_one_resp_processing <- function(resp_input,data_input){
one_resp <- filter(data_input,
response == resp_input)
quantile_one_resp <- one_resp%>%
group_by(modality)%>%
summarise(quantile = c(0.025, 0.5, 0.975),
value = quantile(value, c(0.025,0.5,0.975)))%>%
ungroup()%>%
pivot_wider(names_from = quantile,
values_from = value)
mean_one_resp <- one_resp %>%
group_by(modality)%>%
summarise(mean = mean(value))%>%
ungroup()
metric_one_resp <- left_join(quantile_one_resp,
mean_one_resp,
by = "modality")%>%
mutate(response = resp_input)
return(metric_one_resp)
}
boot_quantile_processing <- function(data_input){
all_resp <- resp_vec %>% map(.,
~ boot_one_resp_processing(resp_input = .,
data_input))%>%
do.call(rbind,.)
return(all_resp)
}
metric_names <- names(boot_all_metrix)
kable_boot_metric <- boot_all_metrix %>%
map(.,
~boot_quantile_processing(data_input = .)%>%
mutate(algorithm = modality)%>%
mutate(algorithm = factor(algorithm,
levels =c ("FDR","Bonferroni","OLS","Elastic\nNet",
"Random\nForest","Xgboost", "Linear\nSVM",
"Polynomial\nSVM" ,"RBF\nSVM"))))
kable_metric_vars <- colnames(kable_boot_metric[[1]])[-1]
kable_boot_metric_vars <- kable_boot_metric %>%
map(.,~select(.,all_of(kable_metric_vars))) %>%
map(.,~arrange(.,match(algorithm, c("FDR","Bonferroni","OLS","Elastic\nNet",
"Random\nForest","Xgboost", "Linear\nSVM",
"Polynomial\nSVM" ,"RBF\nSVM"))) %>%
arrange(desc(match(response,
c("Pattern Speed",
"Audi Verbal",
"Flanker",
"Seq Memory",
"Card Sort", # "Cog Flex",
"Little Man",
"List Work Mem",
"Matrix Reason",
"Reading Recog",
"Pic Vocab",
"2-back Work Mem",
"gfactor" )))) %>%
mutate_if(is.numeric, round, 3) %>%
relocate(response,algorithm))
kable_boot_metric_vars[[1]] %>%
kableExtra::kbl(caption = paste0(metric_names[1])) %>%
kableExtra::kable_classic(full_width = F,
html_font = "Cambria")
response | algorithm | 0.025 | 0.5 | 0.975 | mean |
---|---|---|---|---|---|
gfactor | FDR | -0.006 | 0.092 | 0.237 | 0.099 |
gfactor | Bonferroni | 0.014 | 0.111 | 0.245 | 0.118 |
gfactor | OLS | 0.358 | 0.410 | 0.458 | 0.409 |
gfactor | Elastic Net | 0.381 | 0.432 | 0.480 | 0.432 |
gfactor | Random Forest | 0.363 | 0.416 | 0.467 | 0.416 |
gfactor | Xgboost | 0.356 | 0.408 | 0.458 | 0.408 |
gfactor | Linear SVM | 0.377 | 0.428 | 0.478 | 0.428 |
gfactor | Polynomial SVM | 0.377 | 0.428 | 0.478 | 0.428 |
gfactor | RBF SVM | 0.382 | 0.434 | 0.484 | 0.434 |
2-back Work Mem | FDR | -0.016 | 0.092 | 0.239 | 0.097 |
2-back Work Mem | Bonferroni | 0.011 | 0.114 | 0.249 | 0.119 |
2-back Work Mem | OLS | 0.447 | 0.493 | 0.536 | 0.493 |
2-back Work Mem | Elastic Net | 0.468 | 0.514 | 0.556 | 0.513 |
2-back Work Mem | Random Forest | 0.423 | 0.473 | 0.520 | 0.473 |
2-back Work Mem | Xgboost | 0.409 | 0.459 | 0.507 | 0.459 |
2-back Work Mem | Linear SVM | 0.454 | 0.500 | 0.543 | 0.499 |
2-back Work Mem | Polynomial SVM | 0.454 | 0.500 | 0.543 | 0.499 |
2-back Work Mem | RBF SVM | 0.465 | 0.511 | 0.554 | 0.510 |
Pic Vocab | FDR | -0.035 | 0.077 | 0.169 | 0.073 |
Pic Vocab | Bonferroni | -0.016 | 0.089 | 0.175 | 0.086 |
Pic Vocab | OLS | 0.257 | 0.311 | 0.363 | 0.311 |
Pic Vocab | Elastic Net | 0.298 | 0.351 | 0.402 | 0.350 |
Pic Vocab | Random Forest | 0.273 | 0.327 | 0.380 | 0.327 |
Pic Vocab | Xgboost | 0.279 | 0.333 | 0.385 | 0.332 |
Pic Vocab | Linear SVM | 0.273 | 0.329 | 0.383 | 0.328 |
Pic Vocab | Polynomial SVM | 0.277 | 0.332 | 0.384 | 0.331 |
Pic Vocab | RBF SVM | 0.276 | 0.331 | 0.384 | 0.331 |
Reading Recog | FDR | -0.017 | 0.087 | 0.196 | 0.088 |
Reading Recog | Bonferroni | 0.026 | 0.115 | 0.207 | 0.116 |
Reading Recog | OLS | 0.211 | 0.268 | 0.322 | 0.268 |
Reading Recog | Elastic Net | 0.268 | 0.323 | 0.374 | 0.323 |
Reading Recog | Random Forest | 0.247 | 0.306 | 0.360 | 0.306 |
Reading Recog | Xgboost | 0.243 | 0.300 | 0.353 | 0.300 |
Reading Recog | Linear SVM | 0.244 | 0.299 | 0.351 | 0.299 |
Reading Recog | Polynomial SVM | 0.255 | 0.309 | 0.360 | 0.309 |
Reading Recog | RBF SVM | 0.258 | 0.312 | 0.364 | 0.312 |
Matrix Reason | FDR | -0.026 | 0.072 | 0.189 | 0.076 |
Matrix Reason | Bonferroni | -0.014 | 0.095 | 0.200 | 0.095 |
Matrix Reason | OLS | 0.218 | 0.278 | 0.332 | 0.277 |
Matrix Reason | Elastic Net | 0.226 | 0.286 | 0.342 | 0.286 |
Matrix Reason | Random Forest | 0.211 | 0.270 | 0.328 | 0.270 |
Matrix Reason | Xgboost | 0.201 | 0.260 | 0.318 | 0.259 |
Matrix Reason | Linear SVM | 0.227 | 0.288 | 0.346 | 0.288 |
Matrix Reason | Polynomial SVM | 0.217 | 0.276 | 0.335 | 0.277 |
Matrix Reason | RBF SVM | 0.227 | 0.287 | 0.346 | 0.287 |
List Work Mem | FDR | -0.017 | 0.070 | 0.176 | 0.073 |
List Work Mem | Bonferroni | -0.008 | 0.085 | 0.185 | 0.087 |
List Work Mem | OLS | 0.200 | 0.257 | 0.312 | 0.257 |
List Work Mem | Elastic Net | 0.238 | 0.291 | 0.344 | 0.292 |
List Work Mem | Random Forest | 0.203 | 0.259 | 0.313 | 0.259 |
List Work Mem | Xgboost | 0.205 | 0.260 | 0.313 | 0.260 |
List Work Mem | Linear SVM | 0.216 | 0.270 | 0.322 | 0.270 |
List Work Mem | Polynomial SVM | 0.221 | 0.276 | 0.328 | 0.276 |
List Work Mem | RBF SVM | 0.221 | 0.275 | 0.328 | 0.276 |
Little Man | FDR | -0.015 | 0.072 | 0.162 | 0.073 |
Little Man | Bonferroni | -0.001 | 0.087 | 0.170 | 0.086 |
Little Man | OLS | 0.182 | 0.242 | 0.298 | 0.241 |
Little Man | Elastic Net | 0.207 | 0.266 | 0.321 | 0.265 |
Little Man | Random Forest | 0.184 | 0.242 | 0.301 | 0.242 |
Little Man | Xgboost | 0.192 | 0.251 | 0.309 | 0.251 |
Little Man | Linear SVM | 0.205 | 0.261 | 0.317 | 0.261 |
Little Man | Polynomial SVM | 0.190 | 0.248 | 0.305 | 0.248 |
Little Man | RBF SVM | 0.210 | 0.268 | 0.325 | 0.268 |
Card Sort | FDR | -0.015 | 0.066 | 0.150 | 0.067 |
Card Sort | Bonferroni | -0.004 | 0.080 | 0.158 | 0.079 |
Card Sort | OLS | 0.141 | 0.201 | 0.260 | 0.201 |
Card Sort | Elastic Net | 0.163 | 0.226 | 0.286 | 0.225 |
Card Sort | Random Forest | 0.153 | 0.215 | 0.276 | 0.215 |
Card Sort | Xgboost | 0.152 | 0.213 | 0.276 | 0.214 |
Card Sort | Linear SVM | 0.132 | 0.196 | 0.256 | 0.196 |
Card Sort | Polynomial SVM | 0.166 | 0.228 | 0.288 | 0.227 |
Card Sort | RBF SVM | 0.171 | 0.230 | 0.290 | 0.230 |
Seq Memory | FDR | -0.038 | 0.057 | 0.151 | 0.057 |
Seq Memory | Bonferroni | -0.019 | 0.086 | 0.160 | 0.081 |
Seq Memory | OLS | 0.051 | 0.118 | 0.180 | 0.118 |
Seq Memory | Elastic Net | 0.098 | 0.163 | 0.223 | 0.163 |
Seq Memory | Random Forest | 0.097 | 0.157 | 0.217 | 0.157 |
Seq Memory | Xgboost | 0.114 | 0.176 | 0.234 | 0.175 |
Seq Memory | Linear SVM | 0.094 | 0.158 | 0.219 | 0.158 |
Seq Memory | Polynomial SVM | 0.104 | 0.168 | 0.229 | 0.168 |
Seq Memory | RBF SVM | 0.104 | 0.168 | 0.230 | 0.168 |
Flanker | FDR | -0.039 | 0.074 | 0.180 | 0.073 |
Flanker | Bonferroni | -0.003 | 0.111 | 0.193 | 0.106 |
Flanker | OLS | 0.077 | 0.141 | 0.205 | 0.141 |
Flanker | Elastic Net | 0.146 | 0.212 | 0.273 | 0.212 |
Flanker | Random Forest | 0.132 | 0.194 | 0.253 | 0.194 |
Flanker | Xgboost | 0.123 | 0.185 | 0.243 | 0.184 |
Flanker | Linear SVM | 0.125 | 0.190 | 0.252 | 0.190 |
Flanker | Polynomial SVM | 0.139 | 0.205 | 0.266 | 0.205 |
Flanker | RBF SVM | 0.091 | 0.158 | 0.222 | 0.158 |
Audi Verbal | FDR | -0.032 | 0.054 | 0.140 | 0.054 |
Audi Verbal | Bonferroni | 0.002 | 0.075 | 0.153 | 0.076 |
Audi Verbal | OLS | 0.025 | 0.090 | 0.157 | 0.090 |
Audi Verbal | Elastic Net | 0.074 | 0.138 | 0.201 | 0.138 |
Audi Verbal | Random Forest | 0.090 | 0.154 | 0.215 | 0.154 |
Audi Verbal | Xgboost | 0.075 | 0.139 | 0.199 | 0.138 |
Audi Verbal | Linear SVM | 0.058 | 0.122 | 0.186 | 0.123 |
Audi Verbal | Polynomial SVM | 0.081 | 0.146 | 0.208 | 0.146 |
Audi Verbal | RBF SVM | 0.082 | 0.146 | 0.207 | 0.146 |
Pattern Speed | FDR | -0.025 | 0.065 | 0.144 | 0.064 |
Pattern Speed | Bonferroni | -0.013 | 0.079 | 0.153 | 0.077 |
Pattern Speed | OLS | 0.068 | 0.129 | 0.188 | 0.129 |
Pattern Speed | Elastic Net | 0.093 | 0.156 | 0.218 | 0.156 |
Pattern Speed | Random Forest | 0.109 | 0.169 | 0.227 | 0.169 |
Pattern Speed | Xgboost | 0.100 | 0.163 | 0.224 | 0.162 |
Pattern Speed | Linear SVM | 0.083 | 0.147 | 0.206 | 0.146 |
Pattern Speed | Polynomial SVM | 0.095 | 0.157 | 0.217 | 0.156 |
Pattern Speed | RBF SVM | 0.097 | 0.159 | 0.220 | 0.158 |
kable_boot_metric_vars[[2]] %>%
kableExtra::kbl(caption = paste0(metric_names[2])) %>%
kableExtra::kable_classic(full_width = F,
html_font = "Cambria")
response | algorithm | 0.025 | 0.5 | 0.975 | mean |
---|---|---|---|---|---|
gfactor | FDR | -0.007 | 0.007 | 0.054 | 0.011 |
gfactor | Bonferroni | -0.007 | 0.011 | 0.058 | 0.015 |
gfactor | OLS | 0.103 | 0.158 | 0.206 | 0.157 |
gfactor | Elastic Net | 0.143 | 0.185 | 0.226 | 0.185 |
gfactor | Random Forest | 0.131 | 0.167 | 0.203 | 0.167 |
gfactor | Xgboost | 0.125 | 0.164 | 0.201 | 0.164 |
gfactor | Linear SVM | 0.141 | 0.180 | 0.218 | 0.180 |
gfactor | Polynomial SVM | 0.141 | 0.181 | 0.219 | 0.181 |
gfactor | RBF SVM | 0.144 | 0.185 | 0.225 | 0.185 |
2-back Work Mem | FDR | -0.007 | 0.006 | 0.055 | 0.011 |
2-back Work Mem | Bonferroni | -0.006 | 0.011 | 0.060 | 0.015 |
2-back Work Mem | OLS | 0.190 | 0.239 | 0.287 | 0.239 |
2-back Work Mem | Elastic Net | 0.218 | 0.260 | 0.300 | 0.260 |
2-back Work Mem | Random Forest | 0.176 | 0.216 | 0.254 | 0.216 |
2-back Work Mem | Xgboost | 0.166 | 0.207 | 0.246 | 0.207 |
2-back Work Mem | Linear SVM | 0.202 | 0.247 | 0.288 | 0.246 |
2-back Work Mem | Polynomial SVM | 0.202 | 0.247 | 0.288 | 0.246 |
2-back Work Mem | RBF SVM | 0.210 | 0.257 | 0.301 | 0.257 |
Pic Vocab | FDR | -0.012 | 0.004 | 0.023 | 0.004 |
Pic Vocab | Bonferroni | -0.014 | 0.006 | 0.026 | 0.006 |
Pic Vocab | OLS | 0.035 | 0.083 | 0.127 | 0.082 |
Pic Vocab | Elastic Net | 0.086 | 0.122 | 0.155 | 0.121 |
Pic Vocab | Random Forest | 0.072 | 0.102 | 0.131 | 0.102 |
Pic Vocab | Xgboost | 0.076 | 0.108 | 0.140 | 0.108 |
Pic Vocab | Linear SVM | 0.058 | 0.099 | 0.139 | 0.099 |
Pic Vocab | Polynomial SVM | 0.064 | 0.104 | 0.143 | 0.104 |
Pic Vocab | RBF SVM | 0.062 | 0.104 | 0.143 | 0.103 |
Reading Recog | FDR | -0.007 | 0.006 | 0.035 | 0.008 |
Reading Recog | Bonferroni | -0.005 | 0.011 | 0.039 | 0.013 |
Reading Recog | OLS | 0.013 | 0.058 | 0.100 | 0.057 |
Reading Recog | Elastic Net | 0.071 | 0.101 | 0.128 | 0.100 |
Reading Recog | Random Forest | 0.060 | 0.090 | 0.117 | 0.089 |
Reading Recog | Xgboost | 0.057 | 0.085 | 0.110 | 0.084 |
Reading Recog | Linear SVM | 0.052 | 0.084 | 0.114 | 0.084 |
Reading Recog | Polynomial SVM | 0.058 | 0.088 | 0.115 | 0.088 |
Reading Recog | RBF SVM | 0.059 | 0.090 | 0.118 | 0.090 |
Matrix Reason | FDR | -0.009 | 0.004 | 0.033 | 0.006 |
Matrix Reason | Bonferroni | -0.010 | 0.008 | 0.036 | 0.009 |
Matrix Reason | OLS | 0.016 | 0.064 | 0.107 | 0.063 |
Matrix Reason | Elastic Net | 0.048 | 0.081 | 0.111 | 0.081 |
Matrix Reason | Random Forest | 0.041 | 0.072 | 0.101 | 0.071 |
Matrix Reason | Xgboost | 0.039 | 0.063 | 0.087 | 0.063 |
Matrix Reason | Linear SVM | 0.048 | 0.081 | 0.112 | 0.081 |
Matrix Reason | Polynomial SVM | 0.036 | 0.074 | 0.109 | 0.073 |
Matrix Reason | RBF SVM | 0.049 | 0.080 | 0.111 | 0.080 |
List Work Mem | FDR | -0.009 | 0.003 | 0.028 | 0.005 |
List Work Mem | Bonferroni | -0.010 | 0.006 | 0.030 | 0.007 |
List Work Mem | OLS | 0.002 | 0.047 | 0.090 | 0.047 |
List Work Mem | Elastic Net | 0.055 | 0.083 | 0.111 | 0.083 |
List Work Mem | Random Forest | 0.038 | 0.066 | 0.093 | 0.066 |
List Work Mem | Xgboost | 0.034 | 0.066 | 0.096 | 0.065 |
List Work Mem | Linear SVM | 0.039 | 0.070 | 0.099 | 0.070 |
List Work Mem | Polynomial SVM | 0.045 | 0.072 | 0.098 | 0.072 |
List Work Mem | RBF SVM | 0.045 | 0.072 | 0.099 | 0.072 |
Little Man | FDR | -0.008 | 0.004 | 0.022 | 0.005 |
Little Man | Bonferroni | -0.009 | 0.006 | 0.024 | 0.007 |
Little Man | OLS | 0.000 | 0.043 | 0.084 | 0.042 |
Little Man | Elastic Net | 0.041 | 0.069 | 0.096 | 0.069 |
Little Man | Random Forest | 0.032 | 0.056 | 0.081 | 0.056 |
Little Man | Xgboost | 0.035 | 0.060 | 0.086 | 0.060 |
Little Man | Linear SVM | 0.021 | 0.060 | 0.097 | 0.059 |
Little Man | Polynomial SVM | 0.017 | 0.054 | 0.089 | 0.054 |
Little Man | RBF SVM | 0.033 | 0.068 | 0.100 | 0.068 |
Card Sort | FDR | -0.008 | 0.003 | 0.019 | 0.004 |
Card Sort | Bonferroni | -0.008 | 0.005 | 0.021 | 0.005 |
Card Sort | OLS | -0.026 | 0.018 | 0.059 | 0.017 |
Card Sort | Elastic Net | 0.025 | 0.049 | 0.072 | 0.049 |
Card Sort | Random Forest | 0.019 | 0.045 | 0.071 | 0.045 |
Card Sort | Xgboost | 0.021 | 0.043 | 0.067 | 0.044 |
Card Sort | Linear SVM | 0.003 | 0.035 | 0.064 | 0.034 |
Card Sort | Polynomial SVM | 0.026 | 0.048 | 0.070 | 0.048 |
Card Sort | RBF SVM | 0.026 | 0.051 | 0.074 | 0.051 |
Seq Memory | FDR | -0.009 | 0.002 | 0.019 | 0.003 |
Seq Memory | Bonferroni | -0.010 | 0.006 | 0.021 | 0.006 |
Seq Memory | OLS | -0.076 | -0.031 | 0.009 | -0.032 |
Seq Memory | Elastic Net | 0.004 | 0.026 | 0.046 | 0.025 |
Seq Memory | Random Forest | 0.000 | 0.023 | 0.045 | 0.023 |
Seq Memory | Xgboost | 0.009 | 0.029 | 0.048 | 0.029 |
Seq Memory | Linear SVM | -0.024 | 0.011 | 0.042 | 0.010 |
Seq Memory | Polynomial SVM | -0.002 | 0.024 | 0.048 | 0.024 |
Seq Memory | RBF SVM | -0.002 | 0.024 | 0.048 | 0.024 |
Flanker | FDR | -0.009 | 0.004 | 0.024 | 0.005 |
Flanker | Bonferroni | -0.007 | 0.010 | 0.027 | 0.010 |
Flanker | OLS | -0.063 | -0.017 | 0.026 | -0.017 |
Flanker | Elastic Net | 0.018 | 0.044 | 0.066 | 0.043 |
Flanker | Random Forest | 0.015 | 0.036 | 0.055 | 0.036 |
Flanker | Xgboost | 0.013 | 0.032 | 0.050 | 0.032 |
Flanker | Linear SVM | -0.003 | 0.025 | 0.050 | 0.024 |
Flanker | Polynomial SVM | 0.003 | 0.027 | 0.049 | 0.027 |
Flanker | RBF SVM | -0.013 | 0.013 | 0.038 | 0.013 |
Audi Verbal | FDR | -0.009 | 0.002 | 0.015 | 0.002 |
Audi Verbal | Bonferroni | -0.007 | 0.005 | 0.018 | 0.005 |
Audi Verbal | OLS | -0.100 | -0.054 | -0.008 | -0.054 |
Audi Verbal | Elastic Net | -0.011 | 0.015 | 0.040 | 0.014 |
Audi Verbal | Random Forest | 0.000 | 0.023 | 0.044 | 0.022 |
Audi Verbal | Xgboost | 0.004 | 0.014 | 0.023 | 0.014 |
Audi Verbal | Linear SVM | -0.031 | 0.000 | 0.029 | 0.000 |
Audi Verbal | Polynomial SVM | -0.005 | 0.017 | 0.039 | 0.017 |
Audi Verbal | RBF SVM | -0.009 | 0.016 | 0.040 | 0.016 |
Pattern Speed | FDR | -0.008 | 0.003 | 0.015 | 0.003 |
Pattern Speed | Bonferroni | -0.008 | 0.005 | 0.017 | 0.005 |
Pattern Speed | OLS | -0.048 | -0.011 | 0.023 | -0.011 |
Pattern Speed | Elastic Net | 0.007 | 0.021 | 0.035 | 0.021 |
Pattern Speed | Random Forest | 0.009 | 0.027 | 0.045 | 0.027 |
Pattern Speed | Xgboost | 0.008 | 0.024 | 0.040 | 0.024 |
Pattern Speed | Linear SVM | -0.010 | 0.017 | 0.041 | 0.016 |
Pattern Speed | Polynomial SVM | 0.006 | 0.022 | 0.037 | 0.022 |
Pattern Speed | RBF SVM | 0.007 | 0.022 | 0.037 | 0.022 |
kable_boot_metric_vars[[3]] %>%
kableExtra::kbl(caption = paste0(metric_names[3])) %>%
kableExtra::kable_classic(full_width = F,
html_font = "Cambria")
response | algorithm | 0.025 | 0.5 | 0.975 | mean |
---|---|---|---|---|---|
gfactor | FDR | 0.751 | 0.789 | 0.828 | 0.789 |
gfactor | Bonferroni | 0.750 | 0.788 | 0.827 | 0.788 |
gfactor | OLS | 0.700 | 0.733 | 0.768 | 0.733 |
gfactor | Elastic Net | 0.687 | 0.720 | 0.755 | 0.721 |
gfactor | Random Forest | 0.691 | 0.725 | 0.760 | 0.725 |
gfactor | Xgboost | 0.695 | 0.729 | 0.764 | 0.730 |
gfactor | Linear SVM | 0.688 | 0.721 | 0.755 | 0.721 |
gfactor | Polynomial SVM | 0.687 | 0.720 | 0.754 | 0.721 |
gfactor | RBF SVM | 0.682 | 0.715 | 0.750 | 0.716 |
2-back Work Mem | FDR | 0.787 | 0.824 | 0.860 | 0.824 |
2-back Work Mem | Bonferroni | 0.785 | 0.823 | 0.859 | 0.823 |
2-back Work Mem | OLS | 0.674 | 0.705 | 0.737 | 0.705 |
2-back Work Mem | Elastic Net | 0.669 | 0.699 | 0.731 | 0.700 |
2-back Work Mem | Random Forest | 0.691 | 0.722 | 0.754 | 0.723 |
2-back Work Mem | Xgboost | 0.695 | 0.726 | 0.757 | 0.726 |
2-back Work Mem | Linear SVM | 0.672 | 0.703 | 0.735 | 0.703 |
2-back Work Mem | Polynomial SVM | 0.671 | 0.702 | 0.734 | 0.703 |
2-back Work Mem | RBF SVM | 0.665 | 0.696 | 0.727 | 0.696 |
Pic Vocab | FDR | 0.756 | 0.793 | 0.831 | 0.793 |
Pic Vocab | Bonferroni | 0.755 | 0.792 | 0.831 | 0.793 |
Pic Vocab | OLS | 0.724 | 0.759 | 0.796 | 0.760 |
Pic Vocab | Elastic Net | 0.707 | 0.741 | 0.778 | 0.742 |
Pic Vocab | Random Forest | 0.723 | 0.757 | 0.794 | 0.758 |
Pic Vocab | Xgboost | 0.717 | 0.752 | 0.788 | 0.752 |
Pic Vocab | Linear SVM | 0.710 | 0.746 | 0.783 | 0.746 |
Pic Vocab | Polynomial SVM | 0.709 | 0.746 | 0.782 | 0.746 |
Pic Vocab | RBF SVM | 0.710 | 0.746 | 0.782 | 0.746 |
Reading Recog | FDR | 0.703 | 0.743 | 0.785 | 0.744 |
Reading Recog | Bonferroni | 0.702 | 0.742 | 0.784 | 0.743 |
Reading Recog | OLS | 0.692 | 0.731 | 0.771 | 0.731 |
Reading Recog | Elastic Net | 0.672 | 0.710 | 0.749 | 0.710 |
Reading Recog | Random Forest | 0.676 | 0.714 | 0.754 | 0.714 |
Reading Recog | Xgboost | 0.681 | 0.718 | 0.758 | 0.719 |
Reading Recog | Linear SVM | 0.672 | 0.711 | 0.751 | 0.711 |
Reading Recog | Polynomial SVM | 0.670 | 0.709 | 0.750 | 0.710 |
Reading Recog | RBF SVM | 0.670 | 0.709 | 0.750 | 0.709 |
Matrix Reason | FDR | 0.736 | 0.775 | 0.815 | 0.775 |
Matrix Reason | Bonferroni | 0.734 | 0.773 | 0.813 | 0.773 |
Matrix Reason | OLS | 0.719 | 0.757 | 0.794 | 0.757 |
Matrix Reason | Elastic Net | 0.706 | 0.743 | 0.780 | 0.743 |
Matrix Reason | Random Forest | 0.710 | 0.746 | 0.783 | 0.746 |
Matrix Reason | Xgboost | 0.711 | 0.748 | 0.786 | 0.749 |
Matrix Reason | Linear SVM | 0.706 | 0.743 | 0.781 | 0.743 |
Matrix Reason | Polynomial SVM | 0.711 | 0.748 | 0.785 | 0.748 |
Matrix Reason | RBF SVM | 0.705 | 0.742 | 0.779 | 0.742 |
List Work Mem | FDR | 0.762 | 0.799 | 0.837 | 0.799 |
List Work Mem | Bonferroni | 0.761 | 0.798 | 0.836 | 0.798 |
List Work Mem | OLS | 0.746 | 0.782 | 0.818 | 0.782 |
List Work Mem | Elastic Net | 0.735 | 0.770 | 0.805 | 0.770 |
List Work Mem | Random Forest | 0.740 | 0.775 | 0.810 | 0.775 |
List Work Mem | Xgboost | 0.739 | 0.774 | 0.809 | 0.774 |
List Work Mem | Linear SVM | 0.740 | 0.774 | 0.809 | 0.775 |
List Work Mem | Polynomial SVM | 0.739 | 0.774 | 0.809 | 0.774 |
List Work Mem | RBF SVM | 0.739 | 0.774 | 0.809 | 0.774 |
Little Man | FDR | 0.769 | 0.805 | 0.843 | 0.805 |
Little Man | Bonferroni | 0.767 | 0.804 | 0.841 | 0.804 |
Little Man | OLS | 0.744 | 0.780 | 0.817 | 0.780 |
Little Man | Elastic Net | 0.738 | 0.773 | 0.809 | 0.773 |
Little Man | Random Forest | 0.743 | 0.779 | 0.815 | 0.779 |
Little Man | Xgboost | 0.744 | 0.779 | 0.815 | 0.779 |
Little Man | Linear SVM | 0.738 | 0.774 | 0.810 | 0.774 |
Little Man | Polynomial SVM | 0.740 | 0.776 | 0.812 | 0.776 |
Little Man | RBF SVM | 0.736 | 0.771 | 0.808 | 0.771 |
Card Sort | FDR | 0.728 | 0.767 | 0.807 | 0.767 |
Card Sort | Bonferroni | 0.728 | 0.766 | 0.806 | 0.766 |
Card Sort | OLS | 0.731 | 0.769 | 0.808 | 0.769 |
Card Sort | Elastic Net | 0.713 | 0.751 | 0.791 | 0.751 |
Card Sort | Random Forest | 0.712 | 0.750 | 0.790 | 0.750 |
Card Sort | Xgboost | 0.714 | 0.752 | 0.793 | 0.752 |
Card Sort | Linear SVM | 0.718 | 0.756 | 0.796 | 0.756 |
Card Sort | Polynomial SVM | 0.712 | 0.749 | 0.789 | 0.750 |
Card Sort | RBF SVM | 0.713 | 0.750 | 0.790 | 0.750 |
Seq Memory | FDR | 0.781 | 0.816 | 0.853 | 0.817 |
Seq Memory | Bonferroni | 0.779 | 0.815 | 0.851 | 0.815 |
Seq Memory | OLS | 0.780 | 0.816 | 0.854 | 0.816 |
Seq Memory | Elastic Net | 0.765 | 0.800 | 0.837 | 0.801 |
Seq Memory | Random Forest | 0.766 | 0.801 | 0.838 | 0.801 |
Seq Memory | Xgboost | 0.764 | 0.799 | 0.835 | 0.799 |
Seq Memory | Linear SVM | 0.769 | 0.805 | 0.841 | 0.805 |
Seq Memory | Polynomial SVM | 0.765 | 0.801 | 0.836 | 0.801 |
Seq Memory | RBF SVM | 0.765 | 0.800 | 0.836 | 0.801 |
Flanker | FDR | 0.730 | 0.769 | 0.809 | 0.769 |
Flanker | Bonferroni | 0.727 | 0.766 | 0.807 | 0.767 |
Flanker | OLS | 0.734 | 0.773 | 0.812 | 0.774 |
Flanker | Elastic Net | 0.710 | 0.749 | 0.787 | 0.749 |
Flanker | Random Forest | 0.715 | 0.754 | 0.793 | 0.753 |
Flanker | Xgboost | 0.715 | 0.754 | 0.793 | 0.754 |
Flanker | Linear SVM | 0.709 | 0.748 | 0.788 | 0.748 |
Flanker | Polynomial SVM | 0.708 | 0.746 | 0.786 | 0.746 |
Flanker | RBF SVM | 0.711 | 0.750 | 0.791 | 0.750 |
Audi Verbal | FDR | 0.765 | 0.801 | 0.839 | 0.801 |
Audi Verbal | Bonferroni | 0.764 | 0.800 | 0.838 | 0.800 |
Audi Verbal | OLS | 0.780 | 0.817 | 0.857 | 0.817 |
Audi Verbal | Elastic Net | 0.760 | 0.796 | 0.833 | 0.796 |
Audi Verbal | Random Forest | 0.757 | 0.793 | 0.829 | 0.793 |
Audi Verbal | Xgboost | 0.762 | 0.796 | 0.833 | 0.797 |
Audi Verbal | Linear SVM | 0.761 | 0.797 | 0.836 | 0.798 |
Audi Verbal | Polynomial SVM | 0.757 | 0.792 | 0.830 | 0.793 |
Audi Verbal | RBF SVM | 0.758 | 0.793 | 0.831 | 0.794 |
Pattern Speed | FDR | 0.743 | 0.781 | 0.820 | 0.781 |
Pattern Speed | Bonferroni | 0.743 | 0.780 | 0.819 | 0.781 |
Pattern Speed | OLS | 0.751 | 0.789 | 0.829 | 0.790 |
Pattern Speed | Elastic Net | 0.733 | 0.772 | 0.812 | 0.772 |
Pattern Speed | Random Forest | 0.733 | 0.771 | 0.811 | 0.772 |
Pattern Speed | Xgboost | 0.731 | 0.771 | 0.810 | 0.771 |
Pattern Speed | Linear SVM | 0.735 | 0.774 | 0.813 | 0.774 |
Pattern Speed | Polynomial SVM | 0.732 | 0.772 | 0.811 | 0.772 |
Pattern Speed | RBF SVM | 0.732 | 0.771 | 0.810 | 0.771 |
kable_boot_metric_vars[[4]] %>%
kableExtra::kbl(caption = paste0(metric_names[4])) %>%
kableExtra::kable_classic(full_width = F,
html_font = "Cambria")
response | algorithm | 0.025 | 0.5 | 0.975 | mean |
---|---|---|---|---|---|
gfactor | FDR | 0.947 | 0.993 | 1.039 | 0.993 |
gfactor | Bonferroni | 0.945 | 0.991 | 1.038 | 0.991 |
gfactor | OLS | 0.879 | 0.917 | 0.956 | 0.917 |
gfactor | Elastic Net | 0.863 | 0.902 | 0.941 | 0.902 |
gfactor | Random Forest | 0.871 | 0.912 | 0.952 | 0.911 |
gfactor | Xgboost | 0.872 | 0.914 | 0.955 | 0.913 |
gfactor | Linear SVM | 0.865 | 0.905 | 0.945 | 0.905 |
gfactor | Polynomial SVM | 0.865 | 0.904 | 0.944 | 0.904 |
gfactor | RBF SVM | 0.861 | 0.902 | 0.943 | 0.902 |
2-back Work Mem | FDR | 0.955 | 0.994 | 1.030 | 0.993 |
2-back Work Mem | Bonferroni | 0.952 | 0.991 | 1.028 | 0.991 |
2-back Work Mem | OLS | 0.837 | 0.871 | 0.907 | 0.871 |
2-back Work Mem | Elastic Net | 0.826 | 0.859 | 0.894 | 0.859 |
2-back Work Mem | Random Forest | 0.851 | 0.884 | 0.918 | 0.884 |
2-back Work Mem | Xgboost | 0.856 | 0.890 | 0.924 | 0.890 |
2-back Work Mem | Linear SVM | 0.833 | 0.867 | 0.902 | 0.867 |
2-back Work Mem | Polynomial SVM | 0.833 | 0.867 | 0.902 | 0.867 |
2-back Work Mem | RBF SVM | 0.826 | 0.861 | 0.896 | 0.861 |
Pic Vocab | FDR | 0.950 | 0.996 | 1.044 | 0.997 |
Pic Vocab | Bonferroni | 0.949 | 0.996 | 1.043 | 0.996 |
Pic Vocab | OLS | 0.915 | 0.957 | 1.000 | 0.957 |
Pic Vocab | Elastic Net | 0.894 | 0.936 | 0.981 | 0.937 |
Pic Vocab | Random Forest | 0.903 | 0.946 | 0.991 | 0.947 |
Pic Vocab | Xgboost | 0.900 | 0.943 | 0.988 | 0.944 |
Pic Vocab | Linear SVM | 0.904 | 0.948 | 0.994 | 0.949 |
Pic Vocab | Polynomial SVM | 0.901 | 0.945 | 0.991 | 0.946 |
Pic Vocab | RBF SVM | 0.902 | 0.946 | 0.991 | 0.946 |
Reading Recog | FDR | 0.939 | 0.994 | 1.051 | 0.995 |
Reading Recog | Bonferroni | 0.937 | 0.992 | 1.049 | 0.992 |
Reading Recog | OLS | 0.917 | 0.969 | 1.023 | 0.970 |
Reading Recog | Elastic Net | 0.895 | 0.948 | 1.002 | 0.948 |
Reading Recog | Random Forest | 0.901 | 0.953 | 1.008 | 0.953 |
Reading Recog | Xgboost | 0.903 | 0.956 | 1.010 | 0.956 |
Reading Recog | Linear SVM | 0.903 | 0.956 | 1.011 | 0.956 |
Reading Recog | Polynomial SVM | 0.901 | 0.954 | 1.009 | 0.954 |
Reading Recog | RBF SVM | 0.900 | 0.953 | 1.008 | 0.953 |
Matrix Reason | FDR | 0.948 | 0.996 | 1.044 | 0.996 |
Matrix Reason | Bonferroni | 0.946 | 0.994 | 1.043 | 0.994 |
Matrix Reason | OLS | 0.921 | 0.967 | 1.013 | 0.967 |
Matrix Reason | Elastic Net | 0.912 | 0.958 | 1.005 | 0.958 |
Matrix Reason | Random Forest | 0.917 | 0.962 | 1.010 | 0.962 |
Matrix Reason | Xgboost | 0.921 | 0.967 | 1.014 | 0.967 |
Matrix Reason | Linear SVM | 0.912 | 0.957 | 1.005 | 0.957 |
Matrix Reason | Polynomial SVM | 0.916 | 0.961 | 1.007 | 0.961 |
Matrix Reason | RBF SVM | 0.912 | 0.958 | 1.005 | 0.958 |
List Work Mem | FDR | 0.954 | 0.996 | 1.039 | 0.996 |
List Work Mem | Bonferroni | 0.953 | 0.995 | 1.038 | 0.995 |
List Work Mem | OLS | 0.934 | 0.974 | 1.017 | 0.974 |
List Work Mem | Elastic Net | 0.916 | 0.956 | 0.996 | 0.956 |
List Work Mem | Random Forest | 0.925 | 0.965 | 1.005 | 0.965 |
List Work Mem | Xgboost | 0.924 | 0.965 | 1.006 | 0.965 |
List Work Mem | Linear SVM | 0.922 | 0.963 | 1.004 | 0.963 |
List Work Mem | Polynomial SVM | 0.921 | 0.962 | 1.003 | 0.962 |
List Work Mem | RBF SVM | 0.921 | 0.962 | 1.002 | 0.962 |
Little Man | FDR | 0.954 | 0.996 | 1.040 | 0.996 |
Little Man | Bonferroni | 0.953 | 0.995 | 1.039 | 0.996 |
Little Man | OLS | 0.932 | 0.978 | 1.023 | 0.977 |
Little Man | Elastic Net | 0.921 | 0.964 | 1.006 | 0.964 |
Little Man | Random Forest | 0.927 | 0.970 | 1.015 | 0.970 |
Little Man | Xgboost | 0.925 | 0.968 | 1.011 | 0.968 |
Little Man | Linear SVM | 0.925 | 0.969 | 1.013 | 0.969 |
Little Man | Polynomial SVM | 0.928 | 0.972 | 1.016 | 0.972 |
Little Man | RBF SVM | 0.921 | 0.965 | 1.008 | 0.964 |
Card Sort | FDR | 0.944 | 0.997 | 1.050 | 0.997 |
Card Sort | Bonferroni | 0.944 | 0.996 | 1.050 | 0.996 |
Card Sort | OLS | 0.939 | 0.989 | 1.044 | 0.990 |
Card Sort | Elastic Net | 0.923 | 0.973 | 1.029 | 0.974 |
Card Sort | Random Forest | 0.925 | 0.975 | 1.030 | 0.976 |
Card Sort | Xgboost | 0.926 | 0.976 | 1.032 | 0.977 |
Card Sort | Linear SVM | 0.930 | 0.981 | 1.037 | 0.982 |
Card Sort | Polynomial SVM | 0.923 | 0.974 | 1.029 | 0.975 |
Card Sort | RBF SVM | 0.923 | 0.972 | 1.028 | 0.973 |
Seq Memory | FDR | 0.959 | 0.997 | 1.036 | 0.997 |
Seq Memory | Bonferroni | 0.957 | 0.996 | 1.035 | 0.996 |
Seq Memory | OLS | 0.974 | 1.014 | 1.056 | 1.014 |
Seq Memory | Elastic Net | 0.947 | 0.986 | 1.024 | 0.986 |
Seq Memory | Random Forest | 0.949 | 0.987 | 1.026 | 0.987 |
Seq Memory | Xgboost | 0.946 | 0.984 | 1.023 | 0.984 |
Seq Memory | Linear SVM | 0.954 | 0.993 | 1.034 | 0.994 |
Seq Memory | Polynomial SVM | 0.948 | 0.987 | 1.026 | 0.987 |
Seq Memory | RBF SVM | 0.948 | 0.987 | 1.026 | 0.987 |
Flanker | FDR | 0.940 | 0.996 | 1.053 | 0.996 |
Flanker | Bonferroni | 0.938 | 0.993 | 1.050 | 0.994 |
Flanker | OLS | 0.952 | 1.007 | 1.062 | 1.007 |
Flanker | Elastic Net | 0.923 | 0.976 | 1.031 | 0.976 |
Flanker | Random Forest | 0.926 | 0.980 | 1.036 | 0.980 |
Flanker | Xgboost | 0.928 | 0.982 | 1.038 | 0.982 |
Flanker | Linear SVM | 0.929 | 0.986 | 1.044 | 0.986 |
Flanker | Polynomial SVM | 0.928 | 0.985 | 1.043 | 0.985 |
Flanker | RBF SVM | 0.935 | 0.992 | 1.051 | 0.992 |
Audi Verbal | FDR | 0.955 | 0.998 | 1.041 | 0.998 |
Audi Verbal | Bonferroni | 0.954 | 0.996 | 1.039 | 0.996 |
Audi Verbal | OLS | 0.981 | 1.025 | 1.070 | 1.025 |
Audi Verbal | Elastic Net | 0.950 | 0.991 | 1.034 | 0.991 |
Audi Verbal | Random Forest | 0.946 | 0.987 | 1.030 | 0.988 |
Audi Verbal | Xgboost | 0.950 | 0.992 | 1.035 | 0.992 |
Audi Verbal | Linear SVM | 0.956 | 0.998 | 1.043 | 0.999 |
Audi Verbal | Polynomial SVM | 0.947 | 0.990 | 1.033 | 0.990 |
Audi Verbal | RBF SVM | 0.948 | 0.990 | 1.034 | 0.991 |
Pattern Speed | FDR | 0.951 | 0.997 | 1.044 | 0.997 |
Pattern Speed | Bonferroni | 0.950 | 0.996 | 1.043 | 0.996 |
Pattern Speed | OLS | 0.959 | 1.005 | 1.051 | 1.005 |
Pattern Speed | Elastic Net | 0.942 | 0.989 | 1.036 | 0.989 |
Pattern Speed | Random Forest | 0.939 | 0.985 | 1.032 | 0.985 |
Pattern Speed | Xgboost | 0.939 | 0.987 | 1.034 | 0.987 |
Pattern Speed | Linear SVM | 0.944 | 0.991 | 1.037 | 0.991 |
Pattern Speed | Polynomial SVM | 0.941 | 0.988 | 1.035 | 0.988 |
Pattern Speed | RBF SVM | 0.941 | 0.988 | 1.035 | 0.988 |
Get the predicted values from differenct algorithms
enet_pred_gractor <- enet_predicted_list_gfactor[["gfactor"]]%>%
select(c("model_predict","gfactor"))%>%
rename(enet_pred = model_predict, model_resp = gfactor)
ols_pred_gractor <- OLS_predict_list_gfactor[["gfactor"]]%>%
select(c("model_pred","gfactor"))%>%
rename(ols_pred = model_pred, model_resp = gfactor)
SVM_RBF_pred_gractor <- SVM_RBF_predicted_list_gfactor[["gfactor"]]%>%
select(c("model_predict","gfactor"))%>%
rename(svm_rbf_pred = model_predict, model_resp = gfactor)
svm_linear_pred_gractor <- svm_linear_predicted_list_gfactor[["gfactor"]]%>%
select(c("model_predict","gfactor"))%>%
rename(svm_linear_pred = model_predict, model_resp = gfactor)
svm_poly_pred_gractor <- svm_poly_predicted_list_gfactor[["gfactor"]]%>%
select(c("model_predict","gfactor"))%>%
rename(svm_poly_pred = model_predict, model_resp = gfactor)
random_forest_pred_gractor <- random_forest_predicted_list_gfactor[["gfactor"]]%>%
select(c("model_predict","gfactor"))%>%
rename(random_forest_pred = model_predict, model_resp = gfactor)
xgboost_pred_gractor <- xgboost_predicted_list_gfactor[["gfactor"]]%>%
select(c("model_predict","gfactor"))%>%
rename(xgboost_pred = model_predict, model_resp = gfactor)
gfactor_pred_all <- plyr::join_all(list(enet_pred_gractor,ols_pred_gractor,SVM_RBF_pred_gractor,
svm_linear_pred_gractor, svm_poly_pred_gractor,random_forest_pred_gractor,
xgboost_pred_gractor), by = "model_resp", type = "left")
##get all the predictions from all the working memory tasks
task_pred_processing <- function(resp_input){
enet_pred <- enet_predicted_list[[resp_input]]%>%
select(c("model_predict","roi_Left.Cerebellum.Cortex",resp_input))
names(enet_pred) <- c("enet_pred","roi_Left.Cerebellum.Cortex","model_resp")
ols_pred <- OLS_predict_list[[resp_input]]%>%
select(c("model_pred","roi_Left.Cerebellum.Cortex",resp_input))
names(ols_pred) <- c("ols_pred","roi_Left.Cerebellum.Cortex","model_resp")
svm_rbf_pred <- SVM_RBF_predicted_list[[resp_input]]%>%
select(c("model_predict","roi_Left.Cerebellum.Cortex",resp_input))
names(svm_rbf_pred) <- c("svm_rbf_pred","roi_Left.Cerebellum.Cortex","model_resp")
svm_linear_pred <- svm_linear_predicted_list[[resp_input]]%>%
select(c("model_predict","roi_Left.Cerebellum.Cortex",resp_input))
names(svm_linear_pred) <- c("svm_linear_pred","roi_Left.Cerebellum.Cortex","model_resp")
svm_poly_pred <- svm_poly_predicted_list[[resp_input]]%>%
select(c("model_predict","roi_Left.Cerebellum.Cortex",resp_input))
names(svm_poly_pred) <- c("svm_poly_pred","roi_Left.Cerebellum.Cortex","model_resp")
random_forest_pred <- random_forest_predicted_list[[resp_input]]%>%
select(c("model_predict","roi_Left.Cerebellum.Cortex",resp_input))
names(random_forest_pred) <- c("random_forest_pred","roi_Left.Cerebellum.Cortex","model_resp")
xgboost_pred <- xgboost_predicted_list[[resp_input]]%>%
select(c("model_predict","roi_Left.Cerebellum.Cortex",resp_input))
names(xgboost_pred) <- c("xgboost_pred","roi_Left.Cerebellum.Cortex","model_resp")
pred_all <- plyr::join_all(list(enet_pred,svm_rbf_pred,ols_pred,
svm_linear_pred, svm_poly_pred,random_forest_pred,
xgboost_pred), by=c("roi_Left.Cerebellum.Cortex","model_resp"), type = "left")%>%
select(-"roi_Left.Cerebellum.Cortex")
}
task_pred_all <- resp_names %>% map(.,~task_pred_processing(resp_input = .))
resp_all <- c(resp_names,"gfactor")
pred_all_resp <- vector("list",length =length(resp_all))
names(pred_all_resp) <- resp_all
pred_all_resp[1:11]<-task_pred_all
pred_all_resp[["gfactor"]] <- gfactor_pred_all
perfmatrics_diff_all_ols <-function(data,i){
cor_ols <- cor(data$ols_pred[i],
data$model_resp[i],
use = "pairwise.complete.obs")
tradrsq_ols <- yardstick::rsq_trad(data=data,
truth=.data$model_resp[i],
estimate=.data$ols_pred[i])
mae_ols <- yardstick::mae(data =data,
truth=.data$model_resp[i],
estimate=.data$ols_pred[i])
rmse_ols <- yardstick::rmse(data =data,
truth=.data$model_resp[i],
estimate=.data$ols_pred[i])
cor_enet <- cor(data$enet_pred[i],
data$model_resp[i],
use = "pairwise.complete.obs")
tradrsq_enet <- yardstick::rsq_trad(data=data,
truth=.data$model_resp[i],
estimate=.data$enet_pred[i])
mae_enet <- yardstick::mae(data =data,
truth=.data$model_resp[i],
estimate=.data$enet_pred[i])
rmse_enet <- yardstick::rmse(data =data,
truth=.data$model_resp[i],
estimate=.data$enet_pred[i])
cor_diff_enet <- cor_enet-cor_ols
tradrsq_diff_enet <- tradrsq_enet$.estimate-tradrsq_ols$.estimate
mae_diff_enet <- mae_enet$.estimate-mae_ols$.estimate
rmse_diff_enet <- rmse_enet$.estimate-rmse_ols$.estimate
cor_svm_rbf <- cor(data$svm_rbf_pred[i],
data$model_resp[i],
use = "pairwise.complete.obs")
tradrsq_svm_rbf <- yardstick::rsq_trad(data=data,
truth=.data$model_resp[i],
estimate=.data$svm_rbf_pred[i])
mae_svm_rbf <- yardstick::mae(data =data,
truth=.data$model_resp[i],
estimate=.data$svm_rbf_pred[i])
rmse_svm_rbf <- yardstick::rmse(data =data,
truth=.data$model_resp[i],
estimate=.data$svm_rbf_pred[i])
cor_diff_svm_rbf <- cor_svm_rbf-cor_ols
tradrsq_diff_svm_rbf <- tradrsq_svm_rbf$.estimate-tradrsq_ols$.estimate
mae_diff_svm_rbf <- mae_svm_rbf$.estimate-mae_ols$.estimate
rmse_diff_svm_rbf <- rmse_svm_rbf$.estimate-rmse_ols$.estimate
cor_svm_linear <- cor(data$svm_linear_pred[i],
data$model_resp[i],
use = "pairwise.complete.obs")
tradrsq_svm_linear <- yardstick::rsq_trad(data=data,
truth=.data$model_resp[i],
estimate=.data$svm_linear_pred[i])
mae_svm_linear <- yardstick::mae(data =data,
truth=.data$model_resp[i],
estimate=.data$svm_linear_pred[i])
rmse_svm_linear <- yardstick::rmse(data =data,
truth=.data$model_resp[i],
estimate=.data$svm_linear_pred[i])
cor_diff_svm_linear <- cor_svm_linear-cor_ols
tradrsq_diff_svm_linear <- tradrsq_svm_linear$.estimate-tradrsq_ols$.estimate
mae_diff_svm_linear <- mae_svm_linear$.estimate-mae_ols$.estimate
rmse_diff_svm_linear <- rmse_svm_linear$.estimate-rmse_ols$.estimate
cor_svm_poly <- cor(data$svm_poly_pred[i],
data$model_resp[i],
use = "pairwise.complete.obs")
tradrsq_svm_poly <- yardstick::rsq_trad(data=data,
truth=.data$model_resp[i],
estimate=.data$svm_poly_pred[i])
mae_svm_poly <- yardstick::mae(data =data,
truth=.data$model_resp[i],
estimate=.data$svm_poly_pred[i])
rmse_svm_poly <- yardstick::rmse(data =data,
truth=.data$model_resp[i],
estimate=.data$svm_poly_pred[i])
cor_diff_svm_poly <- cor_svm_poly-cor_ols
tradrsq_diff_svm_poly <- tradrsq_svm_poly$.estimate-tradrsq_ols$.estimate
mae_diff_svm_poly <- mae_svm_poly$.estimate-mae_ols$.estimate
rmse_diff_svm_poly <- rmse_svm_poly$.estimate-rmse_ols$.estimate
cor_random_forest <- cor(data$random_forest_pred[i],
data$model_resp[i],
use = "pairwise.complete.obs")
tradrsq_random_forest <- yardstick::rsq_trad(data=data,
truth=.data$model_resp[i],
estimate=.data$random_forest_pred[i])
mae_random_forest <- yardstick::mae(data =data,
truth=.data$model_resp[i],
estimate=.data$random_forest_pred[i])
rmse_random_forest <- yardstick::rmse(data =data,
truth=.data$model_resp[i],
estimate=.data$random_forest_pred[i])
cor_diff_random_forest <- cor_random_forest-cor_ols
tradrsq_diff_random_forest <- tradrsq_random_forest$.estimate-tradrsq_ols$.estimate
mae_diff_random_forest <- mae_random_forest$.estimate-mae_ols$.estimate
rmse_diff_random_forest <- rmse_random_forest$.estimate-rmse_ols$.estimate
cor_xgboost <- cor(data$xgboost_pred[i],
data$model_resp[i],
use = "pairwise.complete.obs")
tradrsq_xgboost <- yardstick::rsq_trad(data=data,
truth=.data$model_resp[i],
estimate=.data$xgboost_pred[i])
mae_xgboost <- yardstick::mae(data =data,
truth=.data$model_resp[i],
estimate=.data$xgboost_pred[i])
rmse_xgboost <- yardstick::rmse(data =data,
truth=.data$model_resp[i],
estimate=.data$xgboost_pred[i])
cor_diff_xgboost <- cor_xgboost-cor_ols
tradrsq_diff_xgboost <- tradrsq_xgboost$.estimate-tradrsq_ols$.estimate
mae_diff_xgboost <- mae_xgboost$.estimate-mae_ols$.estimate
rmse_diff_xgboost <- rmse_xgboost$.estimate-rmse_ols$.estimate
return(c(cor_diff_enet, tradrsq_diff_enet , mae_diff_enet, rmse_diff_enet,
cor_diff_svm_rbf, tradrsq_diff_svm_rbf , mae_diff_svm_rbf, rmse_diff_svm_rbf,
cor_diff_svm_linear, tradrsq_diff_svm_linear , mae_diff_svm_linear, rmse_diff_svm_linear,
cor_diff_svm_poly, tradrsq_diff_svm_poly , mae_diff_svm_poly, rmse_diff_svm_poly,
cor_diff_random_forest, tradrsq_diff_random_forest , mae_diff_random_forest, rmse_diff_random_forest,
cor_diff_xgboost, tradrsq_diff_xgboost , mae_diff_xgboost, rmse_diff_xgboost))
}
5000 times and compute the performance statistcs with the above function
set.seed(123456)
boot_all_resp_no_uni <- furrr::future_map(pred_all_resp, ~boot::boot(data = .,
statistic = perfmatrics_diff_all_ols,
R = 5000,
# parallel="snow",
# ncpus=20,
#cl=cl
),
.options = furrr::furrr_options(seed = 123456))
saveRDS(boot_all_resp_no_uni, paste0(anotherFold,'working_memory_tasks/windows/boot_all_resp_no_uni_April_12_2022', '.RData'))
uni_var_results_process <- function(model_input, pred_input, ols_input,resp_input){
roi_vec <- model_input$roi
roi_list <- map(roi_vec,function(roi_input=.){
roi_tibble <- select(pred_input,c(roi_input,resp_input ))%>%
mutate(ols_pred = ols_input$model_pred)
names(roi_tibble)<- c("uni_pred","model_resp","ols_pred")
return(roi_tibble)
})
names(roi_list)<- roi_vec
return(roi_list)
}
uni_fdr_results <- pmap(list(univariate_model_pred,univariate_model_fdr,
OLS_predict_list,resp_names),~uni_var_results_process(
model_input=..2,
pred_input=..1,
ols_input=..3,
resp_input=..4
))
uni_bonferroni_results <- pmap(list(univariate_model_pred,univariate_model_bonferroni,
OLS_predict_list,resp_names),~uni_var_results_process(
model_input=..2,
pred_input=..1,
ols_input=..3,
resp_input=..4
))
uni_fdr_results_gfactor <- pmap(list(univariate_model_pred_gfactor,
univariate_model_fdr_gfactor,
OLS_predict_list_gfactor,cfa_resp_names),~uni_var_results_process(
model_input=..2,
pred_input=..1,
ols_input=..3,
resp_input=..4
))
uni_bonferroni_results_gfactor <- pmap(list(univariate_model_pred_gfactor,
univariate_model_bonferroni_gfactor,
OLS_predict_list_gfactor,cfa_resp_names),~uni_var_results_process(
model_input=..2,
pred_input=..1,
ols_input=..3,
resp_input=..4
))
uni_fdr_all <- append(uni_fdr_results,uni_fdr_results_gfactor)
uni_bonferroni_all <- append(uni_bonferroni_results,uni_bonferroni_results_gfactor)
perfmatrics_diff_uni_ols <-function(data,i){
cor_ols <- cor(data$ols_pred[i],
data$model_resp[i],
use = "pairwise.complete.obs")
tradrsq_ols <- yardstick::rsq_trad(data=data,
truth=.data$model_resp[i],
estimate=.data$ols_pred[i])
mae_ols <- yardstick::mae(data =data,
truth=.data$model_resp[i],
estimate=.data$ols_pred[i])
rmse_ols <- yardstick::rmse(data =data,
truth=.data$model_resp[i],
estimate=.data$ols_pred[i])
cor_uni <- cor(data$uni_pred[i],
data$model_resp[i],
use = "pairwise.complete.obs")
tradrsq_uni <- yardstick::rsq_trad(data=data,
truth=.data$model_resp[i],
estimate=.data$uni_pred[i])
mae_uni <- yardstick::mae(data =data,
truth=.data$model_resp[i],
estimate=.data$uni_pred[i])
rmse_uni <- yardstick::rmse(data =data,
truth=.data$model_resp[i],
estimate=.data$uni_pred[i])
cor_diff_uni <- cor_uni-cor_ols
tradrsq_diff_uni <- tradrsq_uni$.estimate-tradrsq_ols$.estimate
mae_diff_uni <- mae_uni$.estimate-mae_ols$.estimate
rmse_diff_uni <- rmse_uni$.estimate-rmse_ols$.estimate
return(c(cor_diff_uni, tradrsq_diff_uni , mae_diff_uni, rmse_diff_uni))
}
bootstrapped difference of univariates
boot_diff_uni <- function(data_input,metric_input){
set.seed(123456)
boot_uni <- furrr::future_map(data_input, ~boot::boot(data = .,
statistic = metric_input,
R = 5000,
# parallel="snow",
# ncpus=20,
#cl=cl
),
.options = furrr::furrr_options(seed = 123456))
return(boot_uni)
}
boot_uni_diff_fdr<-map(uni_fdr_all,~boot_diff_uni(data_input=.,
metric_input =perfmatrics_diff_uni_ols ))
boot_uni_diff_bonferroni <-map(uni_bonferroni_all,~boot_diff_uni(data_input=.,
metric_input =perfmatrics_diff_uni_ols ))
boot_diff_uni_all <- list(fdr=boot_uni_diff_fdr,bonferroni=boot_uni_diff_bonferroni)
saveRDS(boot_diff_uni_all, paste0(anotherFold,'working_memory_tasks/boot_diff_uni_all_April_21_2022', '.RData'))
process the results
uni_boot_results_processing <- function(data_input,resp_input, algor_input){
corr_all <- map(data_input,function(table_input=.){
out_tibble <- tibble(value = table_input$t[,1],
response =rep( resp_plotting_all$short_name[which(resp_plotting_all$response==resp_input)],5000))
return(out_tibble)
})%>%
do.call(rbind,.)%>%
mutate(algorithm = algor_input)
rsq_all <- map(data_input,function(table_input=.){
out_tibble <- tibble(value = table_input$t[,2],
response =rep( resp_plotting_all$short_name[which(resp_plotting_all$response==resp_input)],5000))
return(out_tibble)
})%>%
do.call(rbind,.)%>%
mutate(algorithm = algor_input)
mae_all <- map(data_input,function(table_input=.){
out_tibble <- tibble(value = table_input$t[,3],
response =rep( resp_plotting_all$short_name[which(resp_plotting_all$response==resp_input)],5000))
return(out_tibble)
})%>%
do.call(rbind,.)%>%
mutate(algorithm = algor_input)
rmse_all <- map(data_input,function(table_input=.){
out_tibble <- tibble(value = table_input$t[,4],
response =rep( resp_plotting_all$short_name[which(resp_plotting_all$response==resp_input)],5000))
return(out_tibble)
})%>%
do.call(rbind,.)%>%
mutate(algorithm = algor_input)
out_list <- list(Correlation = corr_all, Traditional_Rsquare=rsq_all,
MAE =mae_all, RMSE = rmse_all )
return(out_list)
}
resp_plotting_all <- bind_rows(resp_var_plotting,tibble(response="gfactor",longer_name="gfactor",short_name="gfactor"))
resp_all <- resp_all%>% set_names()
uni_fdr_diff <- map2(.x=resp_all,.y=boot_uni_diff_fdr,~uni_boot_results_processing(data_input=.y,
resp_input=.x,
algor_input="FDR"))
uni_bonferroni_diff <- map2(.x=resp_all,.y=boot_uni_diff_bonferroni
,~uni_boot_results_processing(data_input=.y,
resp_input=.x,
algor_input="Bonferroni"))
theme_set(theme_ggdist())
boot_diff_result_process<- function(boot_input,resp_input){
boot_output <- boot_input[[resp_input]]
cor_diff_enet <- tibble(value = boot_output$t[,1],algorithm = "Elastic\nNet")
tradrsq_diff_enet<- tibble(value = boot_output$t[,2],algorithm = "Elastic\nNet")
mae_diff_enet<- tibble(value = boot_output$t[,3],algorithm = "Elastic\nNet")
rmse_diff_enet<- tibble(value = boot_output$t[,4],algorithm = "Elastic\nNet")
cor_diff_svm_rbf<- tibble(value = boot_output$t[,5],algorithm = "RBF\nSVM")
tradrsq_diff_svm_rbf <- tibble(value = boot_output$t[,6],algorithm = "RBF\nSVM")
mae_diff_svm_rbf<- tibble(value = boot_output$t[,7],algorithm = "RBF\nSVM")
rmse_diff_svm_rbf<- tibble(value = boot_output$t[,8],algorithm = "RBF\nSVM")
cor_diff_svm_linear<- tibble(value = boot_output$t[,9],algorithm = "Linear\nSVM")
tradrsq_diff_svm_linear <- tibble(value = boot_output$t[,10],algorithm = "Linear\nSVM")
mae_diff_svm_linear<- tibble(value = boot_output$t[,11],algorithm = "Linear\nSVM")
rmse_diff_svm_linear<- tibble(value = boot_output$t[,12],algorithm = "Linear\nSVM")
cor_diff_svm_poly<- tibble(value = boot_output$t[,13],algorithm = "Polynomial\nSVM")
tradrsq_diff_svm_poly<- tibble(value = boot_output$t[,14],algorithm = "Polynomial\nSVM")
mae_diff_svm_poly<- tibble(value = boot_output$t[,15],algorithm = "Polynomial\nSVM")
rmse_diff_svm_poly<- tibble(value = boot_output$t[,16],algorithm = "Polynomial\nSVM")
cor_diff_random_forest<- tibble(value = boot_output$t[,17],algorithm = "Random\nForest")
tradrsq_diff_random_forest <- tibble(value = boot_output$t[,18],algorithm = "Random\nForest")
mae_diff_random_forest<- tibble(value = boot_output$t[,19],algorithm = "Random\nForest")
rmse_diff_random_forest<- tibble(value = boot_output$t[,20],algorithm = "Random\nForest")
cor_diff_xgboost<- tibble(value = boot_output$t[,21],algorithm = "Xgboost")
tradrsq_diff_xgboost<- tibble(value = boot_output$t[,22],algorithm = "Xgboost")
mae_diff_xgboost<- tibble(value = boot_output$t[,23],algorithm = "Xgboost")
rmse_diff_xgboost<- tibble(value = boot_output$t[,24],algorithm = "Xgboost")
corr_all <- bind_rows(cor_diff_svm_poly,cor_diff_random_forest,cor_diff_xgboost,cor_diff_enet,cor_diff_svm_rbf,cor_diff_svm_linear)%>%
mutate(response = resp_plotting_all$short_name[which(resp_plotting_all$response==resp_input)])
tradrsq_all <- bind_rows(tradrsq_diff_svm_poly,tradrsq_diff_random_forest,tradrsq_diff_xgboost,
tradrsq_diff_enet,tradrsq_diff_svm_rbf,tradrsq_diff_svm_linear)%>%
mutate(response = resp_plotting_all$short_name[which(resp_plotting_all$response==resp_input)])
mae_all <- bind_rows(mae_diff_svm_poly,mae_diff_random_forest,mae_diff_xgboost,mae_diff_enet,mae_diff_svm_rbf,mae_diff_svm_linear)%>%
mutate(response = resp_plotting_all$short_name[which(resp_plotting_all$response==resp_input)])
rmse_all <- bind_rows(rmse_diff_svm_poly,rmse_diff_random_forest,rmse_diff_xgboost,rmse_diff_enet,
rmse_diff_svm_rbf,rmse_diff_svm_linear)%>%
mutate(response = resp_plotting_all$short_name[which(resp_plotting_all$response==resp_input)])
return(list(Correlation = corr_all,Traditional_Rsquare=tradrsq_all,MAE=mae_all,RMSE =rmse_all ))
}
boot_diff_nouni <- map(resp_all,~boot_diff_result_process(boot_input=boot_all_resp_no_uni,resp_input=.))
#names(boot_diff_nouni[[12]])<- names(boot_diff_nouni[[11]])
boot_corr_diff_nouni <- map(boot_diff_nouni,"Correlation")%>%
do.call(rbind,.)
boot_cor_diff_fdr <- map(uni_fdr_diff,"Correlation")%>%
do.call(rbind,.)
boot_cor_diff_bonferroni <- map(uni_bonferroni_diff,"Correlation")%>%
do.call(rbind,.)
boot_cor_diff <- boot_corr_diff_nouni%>%
bind_rows(boot_cor_diff_fdr)%>%
bind_rows(boot_cor_diff_bonferroni)%>%
mutate(algorithm = as.factor(algorithm))%>%
mutate(algorithm = factor(algorithm,levels =c ("FDR","Bonferroni","Elastic\nNet",
"Random\nForest","Xgboost",
"Linear\nSVM",
"Polynomial\nSVM" ,"RBF\nSVM")))%>%
mutate(resp_factor= as.factor(response))%>%
mutate(resp_factor = factor(response,levels =c("Pattern Speed", "Audi Verbal",
"Flanker","Seq Memory",
"Card Sort", # "Cog Flex",
"Little Man",
"List Work Mem","Matrix Reason",
"Reading Recog","Pic Vocab",
"2-back Work Mem","gfactor" )))
boot_rsq_diff_nouni <- map(boot_diff_nouni,"Traditional_Rsquare")%>%
do.call(rbind,.)
boot_rsq_diff_fdr <- map(uni_fdr_diff,"Traditional_Rsquare")%>%
do.call(rbind,.)
boot_rsq_diff_bonferroni <- map(uni_bonferroni_diff,"Traditional_Rsquare")%>%
do.call(rbind,.)
boot_rsq_diff <- boot_rsq_diff_nouni%>%
bind_rows(boot_rsq_diff_fdr)%>%
bind_rows(boot_rsq_diff_bonferroni)%>%
mutate(algorithm = as.factor(algorithm))%>%
mutate(algorithm = factor(algorithm,levels =c ("FDR","Bonferroni","Elastic\nNet",
"Random\nForest","Xgboost",
"Linear\nSVM",
"Polynomial\nSVM" ,"RBF\nSVM")))%>%
mutate(resp_factor= as.factor(response))%>%
mutate(resp_factor = factor(response,levels =c("Pattern Speed", "Audi Verbal",
"Flanker","Seq Memory",
"Card Sort", # "Cog Flex",
"Little Man",
"List Work Mem","Matrix Reason",
"Reading Recog","Pic Vocab",
"2-back Work Mem","gfactor" )))
boot_mae_diff_nouni <- map(boot_diff_nouni,"MAE")%>%
do.call(rbind,.)
boot_mae_diff_fdr <- map(uni_fdr_diff,"MAE")%>%
do.call(rbind,.)
boot_mae_diff_bonferroni <- map(uni_bonferroni_diff,"MAE")%>%
do.call(rbind,.)
boot_mae_diff <- boot_mae_diff_nouni%>%
bind_rows(boot_mae_diff_fdr)%>%
bind_rows(boot_mae_diff_bonferroni)%>%
mutate(algorithm = as.factor(algorithm))%>%
mutate(algorithm = factor(algorithm,levels =c ("FDR","Bonferroni","Elastic\nNet",
"Random\nForest","Xgboost",
"Linear\nSVM",
"Polynomial\nSVM" ,"RBF\nSVM")))%>%
mutate(resp_factor= as.factor(response))%>%
mutate(resp_factor = factor(response,levels =c("Pattern Speed", "Audi Verbal",
"Flanker","Seq Memory",
"Card Sort", # "Cog Flex",
"Little Man",
"List Work Mem","Matrix Reason",
"Reading Recog","Pic Vocab",
"2-back Work Mem","gfactor" )))
boot_rmse_diff_nouni <- map(boot_diff_nouni,"RMSE")%>%
do.call(rbind,.)
boot_rmse_diff_fdr <- map(uni_fdr_diff,"RMSE")%>%
do.call(rbind,.)
boot_rmse_diff_bonferroni <- map(uni_bonferroni_diff,"RMSE")%>%
do.call(rbind,.)
boot_rmse_diff <- boot_rmse_diff_nouni%>%
bind_rows(boot_rmse_diff_fdr)%>%
bind_rows(boot_rmse_diff_bonferroni)%>%
mutate(algorithm = as.factor(algorithm))%>%
mutate(algorithm = factor(algorithm,levels =c ("FDR","Bonferroni","Elastic\nNet",
"Random\nForest","Xgboost",
"Linear\nSVM",
"Polynomial\nSVM" ,"RBF\nSVM")))%>%
mutate(resp_factor= as.factor(response))%>%
mutate(resp_factor = factor(response,levels =c("Pattern Speed", "Audi Verbal",
"Flanker","Seq Memory",
"Card Sort", # "Cog Flex",
"Little Man",
"List Work Mem","Matrix Reason",
"Reading Recog","Pic Vocab",
"2-back Work Mem","gfactor" )))
boot_diff_metric<- list(Correlation=boot_cor_diff,
Traditional_Rsquare=boot_rsq_diff,
MAE= boot_mae_diff,
RMSE =boot_rmse_diff )
color_diff_plot <- color_boot_plot[-4]
boot_plot_diff_list <- map2(.x=boot_diff_metric,
.y = metric_vec,
~ggplot(data=.x,
aes(y = value,
x = resp_factor,
color= algorithm)) +
stat_pointinterval(position = position_dodge(width = 2,
preserve = "single"))+
##hline instead of vline because of corrdinate flip
geom_hline(yintercept = 0, color = "grey55", linetype = "dashed",size=1.5) +
ggtitle(.y)+
coord_flip()+
theme(plot.title = element_text(size=15),
axis.title.x = element_blank(),
axis.title.y = element_blank(),
axis.text.x = element_text(size = 12),
axis.text.y = element_text(size=12),
legend.position = "bottom",
legend.text=element_text(size=12),
legend.title=element_text(size=15))+
guides(color = guide_legend(override.aes = list(size = 10)))+
scale_color_manual(values=color_boot_plot[-3],
labels = c ("FDR","Bonferroni",
"Elastic\nNet",
"Random\nForest","Xgboost",
"Linear\nSVM",
"Polynomial\nSVM" ,"RBF\nSVM"))
)
boot_plot_diff_legend <- get_legend(boot_plot_diff_list[[1]])
title_boot_diff_plot <- ggdraw() +
draw_label(
"Bootstrapped Distribution of the Differences in Predictive Performance:
Other Algorithms Minus the OLS regression",
fontface = 'bold',
x = 0,
hjust = 0,
size=21
) +
theme(
# add margin on the left of the drawing canvas,
# so title is aligned with left edge of first plot
plot.margin = margin(0, 0, 0, 7)
)
plot_grid(title_boot_diff_plot,ggpubr::ggarrange(plotlist =boot_plot_diff_list,
ncol = 2,
nrow = 2,
common.legend = TRUE,
legend = "bottom",
legend.grob = boot_plot_diff_legend),
nrow = 2 , rel_heights = c(0.1, 1))
plot without univariate
boot_diff_metricnouni <- map(boot_diff_metric, ~filter(.x,.data[["algorithm"]]!="FDR")%>%
filter(.data[["algorithm"]]!="Bonferroni"))
boot_plot_diff_listnouni <- map2(.x=boot_diff_metricnouni,
.y = metric_vec,
~ggplot(data=.x,
aes(y = value,
x = resp_factor,
color= algorithm)) +
stat_pointinterval(position = position_dodge(width = 2,
preserve = "single"))+
##hline instead of vline because of corrdinate flip
geom_hline(yintercept = 0, color = "grey55", linetype = "dashed",size=1.5) +
ggtitle(.y)+
coord_flip()+
theme(plot.title = element_text(size=15),
axis.title.x = element_blank(),
axis.title.y = element_blank(),
axis.text.x = element_text(size = 12),
axis.text.y = element_text(size=12),
legend.position = "bottom",
legend.text=element_text(size=12),
legend.title=element_text(size=15))+
guides(color = guide_legend(override.aes = list(size = 10)))+
scale_color_manual(values=color_boot_plot[-c(1,2,3)],
labels = c ("Elastic\nNet",
"Random\nForest","Xgboost",
"Linear\nSVM",
"Polynomial\nSVM" ,"RBF\nSVM"))
)
boot_plot_diff_legendnouni <- get_legend(boot_plot_diff_listnouni[[1]])
plot_grid(title_boot_diff_plot,ggpubr::ggarrange(plotlist =boot_plot_diff_listnouni,
ncol = 2,
nrow = 2,
common.legend = TRUE,
legend = "bottom",
legend.grob = boot_plot_diff_legendnouni),
nrow = 2 , rel_heights = c(0.1, 1))
modality_vec_diff <- unique(boot_diff_metric[["Correlation"]][["modality"]])
boot_one_resp_processing_diff <- function(resp_input,data_input){
one_resp <- filter(data_input,
response == resp_input)
quantile_one_resp <- one_resp%>%
group_by(algorithm)%>%
summarise(quantile = c(0.025, 0.5, 0.975),
value = quantile(value, c(0.025,0.5,0.975)))%>%
ungroup()%>%
pivot_wider(names_from = quantile,
values_from = value)
mean_one_resp <- one_resp %>%
group_by(algorithm)%>%
summarise(mean = mean(value))%>%
ungroup()
metric_one_resp <- left_join(quantile_one_resp,
mean_one_resp,
by = "algorithm")%>%
mutate(response = resp_input)
return(metric_one_resp)
}
boot_quantile_processing_diff <- function(data_input){
all_resp <- resp_vec %>% map(.,
~ boot_one_resp_processing_diff(resp_input = .,
data_input))%>%
do.call(rbind,.)
return(all_resp)
}
kable_boot_metric_diff <- boot_diff_metric %>%
map(.,
~boot_quantile_processing_diff(data_input = .))
kable_metric_vars_diff <- colnames(kable_boot_metric_diff[[1]])
kable_boot_metric_vars_diff <- kable_boot_metric_diff %>%
map(.,~arrange(.,desc(match(response,
c("Pattern Speed",
"Audi Verbal",
"Flanker",
"Seq Memory",
"Card Sort", # "Cog Flex",
"Little Man",
"List Work Mem",
"Matrix Reason",
"Reading Recog",
"Pic Vocab",
"2-back Work Mem",
"gfactor" )))) %>%
mutate_if(is.numeric, round, 3) %>%
relocate(response,algorithm))
kable_boot_metric_vars_diff[[1]] %>%
kableExtra::kbl(caption = paste0(metric_names[1])) %>%
kableExtra::kable_classic(full_width = F,
html_font = "Cambria")
response | algorithm | 0.025 | 0.5 | 0.975 | mean |
---|---|---|---|---|---|
gfactor | FDR | -0.426 | -0.317 | -0.170 | -0.311 |
gfactor | Bonferroni | -0.405 | -0.297 | -0.162 | -0.292 |
gfactor | Elastic Net | 0.004 | 0.022 | 0.041 | 0.022 |
gfactor | Random Forest | -0.028 | 0.010 | 0.045 | 0.009 |
gfactor | Xgboost | -0.038 | -0.001 | 0.036 | -0.001 |
gfactor | Linear SVM | 0.000 | 0.019 | 0.038 | 0.019 |
gfactor | Polynomial SVM | 0.000 | 0.019 | 0.038 | 0.019 |
gfactor | RBF SVM | 0.004 | 0.024 | 0.044 | 0.024 |
2-back Work Mem | FDR | -0.516 | -0.400 | -0.253 | -0.396 |
2-back Work Mem | Bonferroni | -0.489 | -0.378 | -0.243 | -0.374 |
2-back Work Mem | Elastic Net | 0.008 | 0.021 | 0.034 | 0.021 |
2-back Work Mem | Random Forest | -0.056 | -0.020 | 0.015 | -0.020 |
2-back Work Mem | Xgboost | -0.065 | -0.034 | -0.002 | -0.034 |
2-back Work Mem | Linear SVM | -0.012 | 0.007 | 0.024 | 0.007 |
2-back Work Mem | Polynomial SVM | -0.011 | 0.007 | 0.025 | 0.007 |
2-back Work Mem | RBF SVM | 0.000 | 0.018 | 0.036 | 0.018 |
Pic Vocab | FDR | -0.353 | -0.234 | -0.132 | -0.237 |
Pic Vocab | Bonferroni | -0.333 | -0.221 | -0.127 | -0.224 |
Pic Vocab | Elastic Net | 0.016 | 0.039 | 0.063 | 0.039 |
Pic Vocab | Random Forest | -0.025 | 0.015 | 0.057 | 0.016 |
Pic Vocab | Xgboost | -0.017 | 0.021 | 0.059 | 0.021 |
Pic Vocab | Linear SVM | -0.006 | 0.017 | 0.042 | 0.018 |
Pic Vocab | Polynomial SVM | -0.004 | 0.020 | 0.045 | 0.020 |
Pic Vocab | RBF SVM | -0.004 | 0.020 | 0.044 | 0.020 |
Reading Recog | FDR | -0.295 | -0.179 | -0.064 | -0.179 |
Reading Recog | Bonferroni | -0.252 | -0.152 | -0.053 | -0.152 |
Reading Recog | Elastic Net | 0.026 | 0.055 | 0.084 | 0.055 |
Reading Recog | Random Forest | -0.007 | 0.038 | 0.083 | 0.038 |
Reading Recog | Xgboost | -0.013 | 0.032 | 0.078 | 0.032 |
Reading Recog | Linear SVM | 0.008 | 0.031 | 0.053 | 0.031 |
Reading Recog | Polynomial SVM | 0.015 | 0.041 | 0.066 | 0.041 |
Reading Recog | RBF SVM | 0.016 | 0.044 | 0.072 | 0.044 |
Matrix Reason | FDR | -0.313 | -0.203 | -0.081 | -0.201 |
Matrix Reason | Bonferroni | -0.298 | -0.181 | -0.070 | -0.181 |
Matrix Reason | Elastic Net | -0.021 | 0.009 | 0.039 | 0.009 |
Matrix Reason | Random Forest | -0.051 | -0.007 | 0.035 | -0.007 |
Matrix Reason | Xgboost | -0.061 | -0.018 | 0.026 | -0.018 |
Matrix Reason | Linear SVM | -0.013 | 0.011 | 0.035 | 0.011 |
Matrix Reason | Polynomial SVM | -0.036 | 0.000 | 0.035 | 0.000 |
Matrix Reason | RBF SVM | -0.017 | 0.010 | 0.037 | 0.010 |
List Work Mem | FDR | -0.285 | -0.186 | -0.075 | -0.183 |
List Work Mem | Bonferroni | -0.274 | -0.171 | -0.066 | -0.170 |
List Work Mem | Elastic Net | 0.006 | 0.035 | 0.063 | 0.035 |
List Work Mem | Random Forest | -0.038 | 0.002 | 0.042 | 0.002 |
List Work Mem | Xgboost | -0.037 | 0.003 | 0.042 | 0.003 |
List Work Mem | Linear SVM | -0.013 | 0.013 | 0.039 | 0.013 |
List Work Mem | Polynomial SVM | -0.012 | 0.019 | 0.049 | 0.019 |
List Work Mem | RBF SVM | -0.013 | 0.019 | 0.051 | 0.019 |
Little Man | FDR | -0.268 | -0.168 | -0.071 | -0.169 |
Little Man | Bonferroni | -0.251 | -0.154 | -0.063 | -0.155 |
Little Man | Elastic Net | -0.004 | 0.024 | 0.051 | 0.024 |
Little Man | Random Forest | -0.045 | 0.001 | 0.044 | 0.000 |
Little Man | Xgboost | -0.038 | 0.009 | 0.054 | 0.009 |
Little Man | Linear SVM | -0.006 | 0.020 | 0.045 | 0.020 |
Little Man | Polynomial SVM | -0.032 | 0.006 | 0.043 | 0.006 |
Little Man | RBF SVM | -0.010 | 0.027 | 0.061 | 0.027 |
Card Sort | FDR | -0.230 | -0.134 | -0.042 | -0.134 |
Card Sort | Bonferroni | -0.215 | -0.121 | -0.035 | -0.122 |
Card Sort | Elastic Net | -0.013 | 0.025 | 0.062 | 0.024 |
Card Sort | Random Forest | -0.040 | 0.014 | 0.071 | 0.014 |
Card Sort | Xgboost | -0.042 | 0.012 | 0.071 | 0.013 |
Card Sort | Linear SVM | -0.035 | -0.005 | 0.025 | -0.005 |
Card Sort | Polynomial SVM | -0.012 | 0.026 | 0.066 | 0.027 |
Card Sort | RBF SVM | -0.014 | 0.029 | 0.074 | 0.029 |
Seq Memory | FDR | -0.171 | -0.061 | 0.045 | -0.061 |
Seq Memory | Bonferroni | -0.147 | -0.034 | 0.055 | -0.038 |
Seq Memory | Elastic Net | 0.001 | 0.045 | 0.090 | 0.045 |
Seq Memory | Random Forest | -0.011 | 0.040 | 0.093 | 0.040 |
Seq Memory | Xgboost | 0.005 | 0.057 | 0.111 | 0.057 |
Seq Memory | Linear SVM | 0.007 | 0.040 | 0.073 | 0.040 |
Seq Memory | Polynomial SVM | 0.007 | 0.050 | 0.094 | 0.050 |
Seq Memory | RBF SVM | 0.008 | 0.050 | 0.094 | 0.051 |
Flanker | FDR | -0.194 | -0.065 | 0.051 | -0.067 |
Flanker | Bonferroni | -0.155 | -0.030 | 0.065 | -0.034 |
Flanker | Elastic Net | 0.030 | 0.071 | 0.113 | 0.071 |
Flanker | Random Forest | -0.006 | 0.054 | 0.114 | 0.053 |
Flanker | Xgboost | -0.015 | 0.044 | 0.102 | 0.043 |
Flanker | Linear SVM | 0.013 | 0.049 | 0.085 | 0.049 |
Flanker | Polynomial SVM | 0.021 | 0.063 | 0.108 | 0.064 |
Flanker | RBF SVM | -0.039 | 0.017 | 0.072 | 0.017 |
Audi Verbal | FDR | -0.139 | -0.036 | 0.063 | -0.037 |
Audi Verbal | Bonferroni | -0.103 | -0.015 | 0.075 | -0.015 |
Audi Verbal | Elastic Net | 0.012 | 0.048 | 0.084 | 0.048 |
Audi Verbal | Random Forest | 0.005 | 0.063 | 0.123 | 0.063 |
Audi Verbal | Xgboost | -0.013 | 0.048 | 0.109 | 0.048 |
Audi Verbal | Linear SVM | 0.001 | 0.032 | 0.063 | 0.032 |
Audi Verbal | Polynomial SVM | 0.011 | 0.056 | 0.101 | 0.056 |
Audi Verbal | RBF SVM | 0.009 | 0.056 | 0.103 | 0.056 |
Pattern Speed | FDR | -0.164 | -0.064 | 0.026 | -0.066 |
Pattern Speed | Bonferroni | -0.151 | -0.051 | 0.035 | -0.053 |
Pattern Speed | Elastic Net | -0.026 | 0.027 | 0.079 | 0.027 |
Pattern Speed | Random Forest | -0.020 | 0.041 | 0.098 | 0.040 |
Pattern Speed | Xgboost | -0.029 | 0.034 | 0.093 | 0.033 |
Pattern Speed | Linear SVM | -0.018 | 0.017 | 0.052 | 0.017 |
Pattern Speed | Polynomial SVM | -0.022 | 0.028 | 0.075 | 0.027 |
Pattern Speed | RBF SVM | -0.022 | 0.030 | 0.080 | 0.030 |
kable_boot_metric_vars_diff[[2]] %>%
kableExtra::kbl(caption = paste0(metric_names[2])) %>%
kableExtra::kable_classic(full_width = F,
html_font = "Cambria")
response | algorithm | 0.025 | 0.5 | 0.975 | mean |
---|---|---|---|---|---|
gfactor | FDR | -0.202 | -0.148 | -0.086 | -0.147 |
gfactor | Bonferroni | -0.199 | -0.144 | -0.082 | -0.143 |
gfactor | Elastic Net | 0.007 | 0.028 | 0.049 | 0.028 |
gfactor | Random Forest | -0.022 | 0.012 | 0.047 | 0.012 |
gfactor | Xgboost | -0.028 | 0.007 | 0.043 | 0.007 |
gfactor | Linear SVM | 0.000 | 0.022 | 0.047 | 0.023 |
gfactor | Polynomial SVM | 0.001 | 0.023 | 0.047 | 0.023 |
gfactor | RBF SVM | 0.007 | 0.028 | 0.052 | 0.028 |
2-back Work Mem | FDR | -0.280 | -0.230 | -0.171 | -0.228 |
2-back Work Mem | Bonferroni | -0.276 | -0.225 | -0.166 | -0.224 |
2-back Work Mem | Elastic Net | 0.005 | 0.020 | 0.037 | 0.021 |
2-back Work Mem | Random Forest | -0.057 | -0.024 | 0.011 | -0.023 |
2-back Work Mem | Xgboost | -0.064 | -0.033 | -0.001 | -0.033 |
2-back Work Mem | Linear SVM | -0.013 | 0.007 | 0.026 | 0.007 |
2-back Work Mem | Polynomial SVM | -0.013 | 0.007 | 0.027 | 0.007 |
2-back Work Mem | RBF SVM | -0.003 | 0.017 | 0.038 | 0.017 |
Pic Vocab | FDR | -0.123 | -0.078 | -0.029 | -0.077 |
Pic Vocab | Bonferroni | -0.122 | -0.076 | -0.028 | -0.076 |
Pic Vocab | Elastic Net | 0.018 | 0.039 | 0.062 | 0.039 |
Pic Vocab | Random Forest | -0.012 | 0.019 | 0.055 | 0.020 |
Pic Vocab | Xgboost | -0.005 | 0.025 | 0.058 | 0.026 |
Pic Vocab | Linear SVM | -0.006 | 0.016 | 0.042 | 0.017 |
Pic Vocab | Polynomial SVM | 0.000 | 0.022 | 0.046 | 0.022 |
Pic Vocab | RBF SVM | 0.000 | 0.021 | 0.044 | 0.021 |
Reading Recog | FDR | -0.094 | -0.049 | -0.001 | -0.049 |
Reading Recog | Bonferroni | -0.089 | -0.044 | 0.003 | -0.044 |
Reading Recog | Elastic Net | 0.019 | 0.043 | 0.069 | 0.043 |
Reading Recog | Random Forest | 0.000 | 0.032 | 0.066 | 0.032 |
Reading Recog | Xgboost | -0.005 | 0.027 | 0.062 | 0.027 |
Reading Recog | Linear SVM | 0.005 | 0.026 | 0.049 | 0.027 |
Reading Recog | Polynomial SVM | 0.006 | 0.030 | 0.056 | 0.030 |
Reading Recog | RBF SVM | 0.007 | 0.032 | 0.059 | 0.032 |
Matrix Reason | FDR | -0.103 | -0.057 | -0.009 | -0.057 |
Matrix Reason | Bonferroni | -0.100 | -0.054 | -0.005 | -0.054 |
Matrix Reason | Elastic Net | -0.007 | 0.017 | 0.043 | 0.017 |
Matrix Reason | Random Forest | -0.024 | 0.008 | 0.040 | 0.008 |
Matrix Reason | Xgboost | -0.033 | 0.000 | 0.034 | 0.000 |
Matrix Reason | Linear SVM | -0.003 | 0.017 | 0.039 | 0.018 |
Matrix Reason | Polynomial SVM | -0.016 | 0.010 | 0.036 | 0.010 |
Matrix Reason | RBF SVM | -0.006 | 0.017 | 0.040 | 0.017 |
List Work Mem | FDR | -0.086 | -0.043 | 0.003 | -0.042 |
List Work Mem | Bonferroni | -0.085 | -0.040 | 0.005 | -0.040 |
List Work Mem | Elastic Net | 0.012 | 0.036 | 0.061 | 0.036 |
List Work Mem | Random Forest | -0.012 | 0.019 | 0.049 | 0.019 |
List Work Mem | Xgboost | -0.011 | 0.018 | 0.047 | 0.018 |
List Work Mem | Linear SVM | -0.001 | 0.022 | 0.045 | 0.022 |
List Work Mem | Polynomial SVM | -0.002 | 0.025 | 0.051 | 0.025 |
List Work Mem | RBF SVM | -0.002 | 0.025 | 0.052 | 0.025 |
Little Man | FDR | -0.079 | -0.037 | 0.006 | -0.037 |
Little Man | Bonferroni | -0.077 | -0.036 | 0.007 | -0.035 |
Little Man | Elastic Net | 0.005 | 0.026 | 0.049 | 0.027 |
Little Man | Random Forest | -0.016 | 0.014 | 0.044 | 0.014 |
Little Man | Xgboost | -0.013 | 0.018 | 0.048 | 0.018 |
Little Man | Linear SVM | -0.003 | 0.017 | 0.036 | 0.017 |
Little Man | Polynomial SVM | -0.016 | 0.012 | 0.038 | 0.011 |
Little Man | RBF SVM | -0.001 | 0.025 | 0.051 | 0.025 |
Card Sort | FDR | -0.055 | -0.014 | 0.029 | -0.014 |
Card Sort | Bonferroni | -0.053 | -0.012 | 0.030 | -0.012 |
Card Sort | Elastic Net | 0.004 | 0.031 | 0.060 | 0.031 |
Card Sort | Random Forest | -0.006 | 0.028 | 0.063 | 0.028 |
Card Sort | Xgboost | -0.008 | 0.026 | 0.063 | 0.027 |
Card Sort | Linear SVM | -0.005 | 0.017 | 0.040 | 0.017 |
Card Sort | Polynomial SVM | 0.002 | 0.031 | 0.061 | 0.031 |
Card Sort | RBF SVM | 0.004 | 0.033 | 0.065 | 0.033 |
Seq Memory | FDR | -0.008 | 0.034 | 0.077 | 0.034 |
Seq Memory | Bonferroni | -0.005 | 0.037 | 0.080 | 0.037 |
Seq Memory | Elastic Net | 0.028 | 0.057 | 0.088 | 0.057 |
Seq Memory | Random Forest | 0.022 | 0.054 | 0.089 | 0.054 |
Seq Memory | Xgboost | 0.027 | 0.061 | 0.097 | 0.061 |
Seq Memory | Linear SVM | 0.019 | 0.042 | 0.066 | 0.042 |
Seq Memory | Polynomial SVM | 0.026 | 0.056 | 0.086 | 0.056 |
Seq Memory | RBF SVM | 0.026 | 0.055 | 0.086 | 0.056 |
Flanker | FDR | -0.023 | 0.023 | 0.070 | 0.023 |
Flanker | Bonferroni | -0.017 | 0.028 | 0.074 | 0.028 |
Flanker | Elastic Net | 0.031 | 0.060 | 0.092 | 0.061 |
Flanker | Random Forest | 0.015 | 0.052 | 0.092 | 0.053 |
Flanker | Xgboost | 0.012 | 0.049 | 0.087 | 0.049 |
Flanker | Linear SVM | 0.011 | 0.041 | 0.074 | 0.041 |
Flanker | Polynomial SVM | 0.010 | 0.044 | 0.081 | 0.044 |
Flanker | RBF SVM | -0.007 | 0.030 | 0.070 | 0.030 |
Audi Verbal | FDR | 0.011 | 0.055 | 0.101 | 0.056 |
Audi Verbal | Bonferroni | 0.014 | 0.058 | 0.104 | 0.058 |
Audi Verbal | Elastic Net | 0.041 | 0.068 | 0.095 | 0.068 |
Audi Verbal | Random Forest | 0.040 | 0.076 | 0.112 | 0.076 |
Audi Verbal | Xgboost | 0.026 | 0.068 | 0.109 | 0.067 |
Audi Verbal | Linear SVM | 0.029 | 0.054 | 0.078 | 0.054 |
Audi Verbal | Polynomial SVM | 0.038 | 0.071 | 0.105 | 0.071 |
Audi Verbal | RBF SVM | 0.038 | 0.070 | 0.103 | 0.070 |
Pattern Speed | FDR | -0.021 | 0.014 | 0.051 | 0.014 |
Pattern Speed | Bonferroni | -0.019 | 0.016 | 0.052 | 0.016 |
Pattern Speed | Elastic Net | 0.003 | 0.032 | 0.062 | 0.032 |
Pattern Speed | Random Forest | 0.007 | 0.039 | 0.070 | 0.039 |
Pattern Speed | Xgboost | 0.004 | 0.035 | 0.067 | 0.036 |
Pattern Speed | Linear SVM | 0.008 | 0.028 | 0.049 | 0.028 |
Pattern Speed | Polynomial SVM | 0.005 | 0.033 | 0.062 | 0.033 |
Pattern Speed | RBF SVM | 0.005 | 0.033 | 0.063 | 0.033 |
kable_boot_metric_vars_diff[[3]] %>%
kableExtra::kbl(caption = paste0(metric_names[3])) %>%
kableExtra::kable_classic(full_width = F,
html_font = "Cambria")
response | algorithm | 0.025 | 0.5 | 0.975 | mean |
---|---|---|---|---|---|
gfactor | FDR | 0.028 | 0.057 | 0.085 | 0.057 |
gfactor | Bonferroni | 0.027 | 0.056 | 0.084 | 0.056 |
gfactor | Elastic Net | -0.023 | -0.013 | -0.002 | -0.013 |
gfactor | Random Forest | -0.026 | -0.008 | 0.009 | -0.008 |
gfactor | Xgboost | -0.021 | -0.004 | 0.013 | -0.004 |
gfactor | Linear SVM | -0.023 | -0.012 | 0.000 | -0.012 |
gfactor | Polynomial SVM | -0.024 | -0.013 | -0.001 | -0.013 |
gfactor | RBF SVM | -0.026 | -0.015 | -0.004 | -0.015 |
2-back Work Mem | FDR | 0.088 | 0.120 | 0.150 | 0.120 |
2-back Work Mem | Bonferroni | 0.087 | 0.118 | 0.148 | 0.118 |
2-back Work Mem | Elastic Net | -0.015 | -0.005 | 0.004 | -0.005 |
2-back Work Mem | Random Forest | -0.001 | 0.018 | 0.037 | 0.018 |
2-back Work Mem | Xgboost | 0.003 | 0.021 | 0.039 | 0.021 |
2-back Work Mem | Linear SVM | -0.013 | -0.002 | 0.010 | -0.002 |
2-back Work Mem | Polynomial SVM | -0.013 | -0.002 | 0.009 | -0.002 |
2-back Work Mem | RBF SVM | -0.020 | -0.009 | 0.003 | -0.009 |
Pic Vocab | FDR | 0.010 | 0.034 | 0.058 | 0.034 |
Pic Vocab | Bonferroni | 0.009 | 0.033 | 0.057 | 0.033 |
Pic Vocab | Elastic Net | -0.029 | -0.017 | -0.007 | -0.018 |
Pic Vocab | Random Forest | -0.019 | -0.002 | 0.014 | -0.002 |
Pic Vocab | Xgboost | -0.023 | -0.007 | 0.008 | -0.008 |
Pic Vocab | Linear SVM | -0.025 | -0.013 | -0.001 | -0.013 |
Pic Vocab | Polynomial SVM | -0.025 | -0.014 | -0.002 | -0.014 |
Pic Vocab | RBF SVM | -0.024 | -0.013 | -0.002 | -0.013 |
Reading Recog | FDR | -0.009 | 0.012 | 0.033 | 0.012 |
Reading Recog | Bonferroni | -0.010 | 0.011 | 0.032 | 0.011 |
Reading Recog | Elastic Net | -0.032 | -0.021 | -0.010 | -0.021 |
Reading Recog | Random Forest | -0.033 | -0.018 | -0.002 | -0.017 |
Reading Recog | Xgboost | -0.029 | -0.013 | 0.003 | -0.013 |
Reading Recog | Linear SVM | -0.031 | -0.020 | -0.010 | -0.020 |
Reading Recog | Polynomial SVM | -0.033 | -0.022 | -0.011 | -0.022 |
Reading Recog | RBF SVM | -0.034 | -0.022 | -0.010 | -0.022 |
Matrix Reason | FDR | -0.004 | 0.019 | 0.041 | 0.019 |
Matrix Reason | Bonferroni | -0.006 | 0.017 | 0.039 | 0.017 |
Matrix Reason | Elastic Net | -0.025 | -0.014 | -0.002 | -0.014 |
Matrix Reason | Random Forest | -0.026 | -0.010 | 0.005 | -0.010 |
Matrix Reason | Xgboost | -0.024 | -0.008 | 0.008 | -0.008 |
Matrix Reason | Linear SVM | -0.024 | -0.014 | -0.003 | -0.014 |
Matrix Reason | Polynomial SVM | -0.022 | -0.009 | 0.004 | -0.009 |
Matrix Reason | RBF SVM | -0.026 | -0.015 | -0.004 | -0.015 |
List Work Mem | FDR | -0.005 | 0.017 | 0.039 | 0.017 |
List Work Mem | Bonferroni | -0.006 | 0.016 | 0.038 | 0.016 |
List Work Mem | Elastic Net | -0.024 | -0.012 | 0.000 | -0.012 |
List Work Mem | Random Forest | -0.021 | -0.007 | 0.008 | -0.007 |
List Work Mem | Xgboost | -0.022 | -0.008 | 0.006 | -0.008 |
List Work Mem | Linear SVM | -0.018 | -0.007 | 0.004 | -0.007 |
List Work Mem | Polynomial SVM | -0.021 | -0.008 | 0.005 | -0.008 |
List Work Mem | RBF SVM | -0.021 | -0.008 | 0.005 | -0.008 |
Little Man | FDR | 0.005 | 0.025 | 0.046 | 0.025 |
Little Man | Bonferroni | 0.003 | 0.024 | 0.044 | 0.024 |
Little Man | Elastic Net | -0.018 | -0.006 | 0.005 | -0.006 |
Little Man | Random Forest | -0.016 | -0.001 | 0.014 | -0.001 |
Little Man | Xgboost | -0.016 | -0.001 | 0.014 | -0.001 |
Little Man | Linear SVM | -0.015 | -0.006 | 0.004 | -0.006 |
Little Man | Polynomial SVM | -0.017 | -0.004 | 0.009 | -0.004 |
Little Man | RBF SVM | -0.021 | -0.009 | 0.004 | -0.009 |
Card Sort | FDR | -0.022 | -0.002 | 0.018 | -0.002 |
Card Sort | Bonferroni | -0.022 | -0.003 | 0.017 | -0.003 |
Card Sort | Elastic Net | -0.032 | -0.018 | -0.005 | -0.019 |
Card Sort | Random Forest | -0.035 | -0.019 | -0.004 | -0.019 |
Card Sort | Xgboost | -0.034 | -0.017 | -0.001 | -0.017 |
Card Sort | Linear SVM | -0.024 | -0.013 | -0.003 | -0.013 |
Card Sort | Polynomial SVM | -0.034 | -0.020 | -0.006 | -0.020 |
Card Sort | RBF SVM | -0.033 | -0.019 | -0.006 | -0.019 |
Seq Memory | FDR | -0.019 | 0.000 | 0.020 | 0.000 |
Seq Memory | Bonferroni | -0.020 | -0.001 | 0.018 | -0.001 |
Seq Memory | Elastic Net | -0.029 | -0.016 | -0.002 | -0.016 |
Seq Memory | Random Forest | -0.030 | -0.015 | 0.000 | -0.015 |
Seq Memory | Xgboost | -0.032 | -0.017 | -0.002 | -0.017 |
Seq Memory | Linear SVM | -0.022 | -0.012 | -0.001 | -0.012 |
Seq Memory | Polynomial SVM | -0.029 | -0.015 | -0.002 | -0.015 |
Seq Memory | RBF SVM | -0.029 | -0.016 | -0.002 | -0.016 |
Flanker | FDR | -0.024 | -0.005 | 0.014 | -0.005 |
Flanker | Bonferroni | -0.026 | -0.007 | 0.012 | -0.007 |
Flanker | Elastic Net | -0.037 | -0.025 | -0.013 | -0.025 |
Flanker | Random Forest | -0.036 | -0.020 | -0.004 | -0.020 |
Flanker | Xgboost | -0.036 | -0.020 | -0.005 | -0.020 |
Flanker | Linear SVM | -0.039 | -0.026 | -0.013 | -0.026 |
Flanker | Polynomial SVM | -0.042 | -0.027 | -0.013 | -0.027 |
Flanker | RBF SVM | -0.039 | -0.023 | -0.008 | -0.023 |
Audi Verbal | FDR | -0.035 | -0.016 | 0.004 | -0.016 |
Audi Verbal | Bonferroni | -0.036 | -0.017 | 0.003 | -0.017 |
Audi Verbal | Elastic Net | -0.033 | -0.021 | -0.010 | -0.021 |
Audi Verbal | Random Forest | -0.040 | -0.025 | -0.008 | -0.024 |
Audi Verbal | Xgboost | -0.039 | -0.021 | -0.003 | -0.021 |
Audi Verbal | Linear SVM | -0.031 | -0.020 | -0.009 | -0.020 |
Audi Verbal | Polynomial SVM | -0.039 | -0.025 | -0.011 | -0.025 |
Audi Verbal | RBF SVM | -0.038 | -0.024 | -0.010 | -0.024 |
Pattern Speed | FDR | -0.024 | -0.008 | 0.008 | -0.008 |
Pattern Speed | Bonferroni | -0.025 | -0.009 | 0.007 | -0.009 |
Pattern Speed | Elastic Net | -0.030 | -0.017 | -0.004 | -0.017 |
Pattern Speed | Random Forest | -0.032 | -0.018 | -0.004 | -0.018 |
Pattern Speed | Xgboost | -0.033 | -0.019 | -0.005 | -0.019 |
Pattern Speed | Linear SVM | -0.026 | -0.016 | -0.006 | -0.016 |
Pattern Speed | Polynomial SVM | -0.031 | -0.018 | -0.005 | -0.018 |
Pattern Speed | RBF SVM | -0.032 | -0.018 | -0.005 | -0.018 |
kable_boot_metric_vars_diff[[4]] %>%
kableExtra::kbl(caption = paste0(metric_names[4])) %>%
kableExtra::kable_classic(full_width = F,
html_font = "Cambria")
response | algorithm | 0.025 | 0.5 | 0.975 | mean |
---|---|---|---|---|---|
gfactor | FDR | 0.044 | 0.077 | 0.109 | 0.077 |
gfactor | Bonferroni | 0.042 | 0.075 | 0.107 | 0.075 |
gfactor | Elastic Net | -0.026 | -0.015 | -0.004 | -0.015 |
gfactor | Random Forest | -0.025 | -0.007 | 0.013 | -0.007 |
gfactor | Xgboost | -0.023 | -0.004 | 0.016 | -0.003 |
gfactor | Linear SVM | -0.025 | -0.012 | 0.000 | -0.012 |
gfactor | Polynomial SVM | -0.025 | -0.013 | -0.001 | -0.013 |
gfactor | RBF SVM | -0.028 | -0.016 | -0.004 | -0.016 |
2-back Work Mem | FDR | 0.090 | 0.123 | 0.153 | 0.122 |
2-back Work Mem | Bonferroni | 0.088 | 0.121 | 0.151 | 0.120 |
2-back Work Mem | Elastic Net | -0.021 | -0.012 | -0.003 | -0.012 |
2-back Work Mem | Random Forest | -0.006 | 0.013 | 0.033 | 0.013 |
2-back Work Mem | Xgboost | 0.000 | 0.019 | 0.037 | 0.019 |
2-back Work Mem | Linear SVM | -0.015 | -0.004 | 0.008 | -0.004 |
2-back Work Mem | Polynomial SVM | -0.015 | -0.004 | 0.007 | -0.004 |
2-back Work Mem | RBF SVM | -0.022 | -0.010 | 0.002 | -0.010 |
Pic Vocab | FDR | 0.015 | 0.040 | 0.065 | 0.040 |
Pic Vocab | Bonferroni | 0.014 | 0.039 | 0.064 | 0.039 |
Pic Vocab | Elastic Net | -0.032 | -0.020 | -0.010 | -0.020 |
Pic Vocab | Random Forest | -0.028 | -0.010 | 0.007 | -0.010 |
Pic Vocab | Xgboost | -0.030 | -0.013 | 0.002 | -0.013 |
Pic Vocab | Linear SVM | -0.021 | -0.009 | 0.003 | -0.009 |
Pic Vocab | Polynomial SVM | -0.024 | -0.011 | 0.000 | -0.011 |
Pic Vocab | RBF SVM | -0.022 | -0.011 | 0.000 | -0.011 |
Reading Recog | FDR | 0.000 | 0.025 | 0.049 | 0.025 |
Reading Recog | Bonferroni | -0.002 | 0.022 | 0.047 | 0.022 |
Reading Recog | Elastic Net | -0.035 | -0.022 | -0.010 | -0.022 |
Reading Recog | Random Forest | -0.033 | -0.016 | 0.000 | -0.017 |
Reading Recog | Xgboost | -0.031 | -0.014 | 0.003 | -0.014 |
Reading Recog | Linear SVM | -0.025 | -0.014 | -0.003 | -0.014 |
Reading Recog | Polynomial SVM | -0.028 | -0.016 | -0.003 | -0.016 |
Reading Recog | RBF SVM | -0.029 | -0.017 | -0.004 | -0.017 |
Matrix Reason | FDR | 0.004 | 0.029 | 0.053 | 0.029 |
Matrix Reason | Bonferroni | 0.003 | 0.027 | 0.052 | 0.027 |
Matrix Reason | Elastic Net | -0.022 | -0.009 | 0.003 | -0.009 |
Matrix Reason | Random Forest | -0.020 | -0.004 | 0.013 | -0.004 |
Matrix Reason | Xgboost | -0.017 | 0.000 | 0.017 | 0.000 |
Matrix Reason | Linear SVM | -0.020 | -0.009 | 0.002 | -0.009 |
Matrix Reason | Polynomial SVM | -0.019 | -0.005 | 0.008 | -0.005 |
Matrix Reason | RBF SVM | -0.020 | -0.009 | 0.003 | -0.009 |
List Work Mem | FDR | -0.001 | 0.022 | 0.044 | 0.022 |
List Work Mem | Bonferroni | -0.003 | 0.020 | 0.044 | 0.020 |
List Work Mem | Elastic Net | -0.031 | -0.019 | -0.006 | -0.019 |
List Work Mem | Random Forest | -0.024 | -0.010 | 0.006 | -0.009 |
List Work Mem | Xgboost | -0.024 | -0.009 | 0.006 | -0.009 |
List Work Mem | Linear SVM | -0.023 | -0.011 | 0.000 | -0.011 |
List Work Mem | Polynomial SVM | -0.026 | -0.013 | 0.001 | -0.013 |
List Work Mem | RBF SVM | -0.026 | -0.013 | 0.001 | -0.013 |
Little Man | FDR | -0.003 | 0.019 | 0.041 | 0.019 |
Little Man | Bonferroni | -0.004 | 0.018 | 0.039 | 0.018 |
Little Man | Elastic Net | -0.025 | -0.014 | -0.002 | -0.014 |
Little Man | Random Forest | -0.022 | -0.007 | 0.008 | -0.007 |
Little Man | Xgboost | -0.025 | -0.009 | 0.007 | -0.009 |
Little Man | Linear SVM | -0.019 | -0.009 | 0.002 | -0.009 |
Little Man | Polynomial SVM | -0.020 | -0.006 | 0.008 | -0.006 |
Little Man | RBF SVM | -0.026 | -0.013 | 0.000 | -0.013 |
Card Sort | FDR | -0.014 | 0.007 | 0.028 | 0.007 |
Card Sort | Bonferroni | -0.015 | 0.006 | 0.027 | 0.006 |
Card Sort | Elastic Net | -0.030 | -0.016 | -0.002 | -0.016 |
Card Sort | Random Forest | -0.031 | -0.014 | 0.003 | -0.014 |
Card Sort | Xgboost | -0.031 | -0.013 | 0.004 | -0.013 |
Card Sort | Linear SVM | -0.020 | -0.009 | 0.003 | -0.009 |
Card Sort | Polynomial SVM | -0.031 | -0.016 | -0.001 | -0.016 |
Card Sort | RBF SVM | -0.032 | -0.017 | -0.002 | -0.017 |
Seq Memory | FDR | -0.038 | -0.017 | 0.004 | -0.017 |
Seq Memory | Bonferroni | -0.039 | -0.018 | 0.003 | -0.018 |
Seq Memory | Elastic Net | -0.043 | -0.028 | -0.014 | -0.028 |
Seq Memory | Random Forest | -0.043 | -0.027 | -0.011 | -0.027 |
Seq Memory | Xgboost | -0.047 | -0.030 | -0.014 | -0.030 |
Seq Memory | Linear SVM | -0.032 | -0.021 | -0.009 | -0.021 |
Seq Memory | Polynomial SVM | -0.042 | -0.028 | -0.013 | -0.028 |
Seq Memory | RBF SVM | -0.042 | -0.028 | -0.013 | -0.028 |
Flanker | FDR | -0.034 | -0.011 | 0.012 | -0.011 |
Flanker | Bonferroni | -0.036 | -0.014 | 0.009 | -0.014 |
Flanker | Elastic Net | -0.045 | -0.030 | -0.016 | -0.030 |
Flanker | Random Forest | -0.045 | -0.026 | -0.008 | -0.026 |
Flanker | Xgboost | -0.043 | -0.024 | -0.006 | -0.025 |
Flanker | Linear SVM | -0.036 | -0.021 | -0.005 | -0.021 |
Flanker | Polynomial SVM | -0.040 | -0.022 | -0.005 | -0.022 |
Flanker | RBF SVM | -0.034 | -0.015 | 0.004 | -0.015 |
Audi Verbal | FDR | -0.049 | -0.027 | -0.005 | -0.027 |
Audi Verbal | Bonferroni | -0.050 | -0.029 | -0.007 | -0.029 |
Audi Verbal | Elastic Net | -0.046 | -0.034 | -0.021 | -0.034 |
Audi Verbal | Random Forest | -0.055 | -0.038 | -0.020 | -0.038 |
Audi Verbal | Xgboost | -0.053 | -0.033 | -0.013 | -0.033 |
Audi Verbal | Linear SVM | -0.038 | -0.026 | -0.015 | -0.026 |
Audi Verbal | Polynomial SVM | -0.051 | -0.035 | -0.019 | -0.035 |
Audi Verbal | RBF SVM | -0.050 | -0.035 | -0.019 | -0.035 |
Pattern Speed | FDR | -0.025 | -0.007 | 0.011 | -0.007 |
Pattern Speed | Bonferroni | -0.026 | -0.008 | 0.010 | -0.008 |
Pattern Speed | Elastic Net | -0.031 | -0.016 | -0.002 | -0.016 |
Pattern Speed | Random Forest | -0.035 | -0.019 | -0.004 | -0.019 |
Pattern Speed | Xgboost | -0.033 | -0.018 | -0.002 | -0.018 |
Pattern Speed | Linear SVM | -0.024 | -0.014 | -0.004 | -0.014 |
Pattern Speed | Polynomial SVM | -0.030 | -0.017 | -0.003 | -0.017 |
Pattern Speed | RBF SVM | -0.031 | -0.017 | -0.002 | -0.017 |
perfmatrics_diff_all_enet <-function(data,i){
cor_enet <- cor(data$enet_pred[i],
data$model_resp[i],
use = "pairwise.complete.obs")
tradrsq_enet <- yardstick::rsq_trad(data=data,
truth=.data$model_resp[i],
estimate=.data$enet_pred[i])
mae_enet <- yardstick::mae(data =data,
truth=.data$model_resp[i],
estimate=.data$enet_pred[i])
rmse_enet <- yardstick::rmse(data =data,
truth=.data$model_resp[i],
estimate=.data$enet_pred[i])
cor_ols <- cor(data$ols_pred[i],
data$model_resp[i],
use = "pairwise.complete.obs")
tradrsq_ols <- yardstick::rsq_trad(data=data,
truth=.data$model_resp[i],
estimate=.data$ols_pred[i])
mae_ols <- yardstick::mae(data =data,
truth=.data$model_resp[i],
estimate=.data$ols_pred[i])
rmse_ols <- yardstick::rmse(data =data,
truth=.data$model_resp[i],
estimate=.data$ols_pred[i])
cor_diff_ols <- cor_ols-cor_enet
tradrsq_diff_ols <- tradrsq_ols$.estimate-tradrsq_enet$.estimate
mae_diff_ols <- mae_ols$.estimate-mae_enet$.estimate
rmse_diff_ols <- rmse_ols$.estimate-rmse_enet$.estimate
cor_svm_rbf <- cor(data$svm_rbf_pred[i],
data$model_resp[i],
use = "pairwise.complete.obs")
tradrsq_svm_rbf <- yardstick::rsq_trad(data=data,
truth=.data$model_resp[i],
estimate=.data$svm_rbf_pred[i])
mae_svm_rbf <- yardstick::mae(data =data,
truth=.data$model_resp[i],
estimate=.data$svm_rbf_pred[i])
rmse_svm_rbf <- yardstick::rmse(data =data,
truth=.data$model_resp[i],
estimate=.data$svm_rbf_pred[i])
cor_diff_svm_rbf <- cor_svm_rbf-cor_enet
tradrsq_diff_svm_rbf <- tradrsq_svm_rbf$.estimate-tradrsq_enet$.estimate
mae_diff_svm_rbf <- mae_svm_rbf$.estimate-mae_enet$.estimate
rmse_diff_svm_rbf <- rmse_svm_rbf$.estimate-rmse_enet$.estimate
cor_svm_linear <- cor(data$svm_linear_pred[i],
data$model_resp[i],
use = "pairwise.complete.obs")
tradrsq_svm_linear <- yardstick::rsq_trad(data=data,
truth=.data$model_resp[i],
estimate=.data$svm_linear_pred[i])
mae_svm_linear <- yardstick::mae(data =data,
truth=.data$model_resp[i],
estimate=.data$svm_linear_pred[i])
rmse_svm_linear <- yardstick::rmse(data =data,
truth=.data$model_resp[i],
estimate=.data$svm_linear_pred[i])
cor_diff_svm_linear <- cor_svm_linear-cor_enet
tradrsq_diff_svm_linear <- tradrsq_svm_linear$.estimate-tradrsq_enet$.estimate
mae_diff_svm_linear <- mae_svm_linear$.estimate-mae_enet$.estimate
rmse_diff_svm_linear <- rmse_svm_linear$.estimate-rmse_enet$.estimate
cor_svm_poly <- cor(data$svm_poly_pred[i],
data$model_resp[i],
use = "pairwise.complete.obs")
tradrsq_svm_poly <- yardstick::rsq_trad(data=data,
truth=.data$model_resp[i],
estimate=.data$svm_poly_pred[i])
mae_svm_poly <- yardstick::mae(data =data,
truth=.data$model_resp[i],
estimate=.data$svm_poly_pred[i])
rmse_svm_poly <- yardstick::rmse(data =data,
truth=.data$model_resp[i],
estimate=.data$svm_poly_pred[i])
cor_diff_svm_poly <- cor_svm_poly-cor_enet
tradrsq_diff_svm_poly <- tradrsq_svm_poly$.estimate-tradrsq_enet$.estimate
mae_diff_svm_poly <- mae_svm_poly$.estimate-mae_enet$.estimate
rmse_diff_svm_poly <- rmse_svm_poly$.estimate-rmse_enet$.estimate
cor_random_forest <- cor(data$random_forest_pred[i],
data$model_resp[i],
use = "pairwise.complete.obs")
tradrsq_random_forest <- yardstick::rsq_trad(data=data,
truth=.data$model_resp[i],
estimate=.data$random_forest_pred[i])
mae_random_forest <- yardstick::mae(data =data,
truth=.data$model_resp[i],
estimate=.data$random_forest_pred[i])
rmse_random_forest <- yardstick::rmse(data =data,
truth=.data$model_resp[i],
estimate=.data$random_forest_pred[i])
cor_diff_random_forest <- cor_random_forest-cor_enet
tradrsq_diff_random_forest <- tradrsq_random_forest$.estimate-tradrsq_enet$.estimate
mae_diff_random_forest <- mae_random_forest$.estimate-mae_enet$.estimate
rmse_diff_random_forest <- rmse_random_forest$.estimate-rmse_enet$.estimate
cor_xgboost <- cor(data$xgboost_pred[i],
data$model_resp[i],
use = "pairwise.complete.obs")
tradrsq_xgboost <- yardstick::rsq_trad(data=data,
truth=.data$model_resp[i],
estimate=.data$xgboost_pred[i])
mae_xgboost <- yardstick::mae(data =data,
truth=.data$model_resp[i],
estimate=.data$xgboost_pred[i])
rmse_xgboost <- yardstick::rmse(data =data,
truth=.data$model_resp[i],
estimate=.data$xgboost_pred[i])
cor_diff_xgboost <- cor_xgboost-cor_enet
tradrsq_diff_xgboost <- tradrsq_xgboost$.estimate-tradrsq_enet$.estimate
mae_diff_xgboost <- mae_xgboost$.estimate-mae_enet$.estimate
rmse_diff_xgboost <- rmse_xgboost$.estimate-rmse_enet$.estimate
return(c(cor_diff_ols, tradrsq_diff_ols , mae_diff_ols, rmse_diff_ols,
cor_diff_svm_rbf, tradrsq_diff_svm_rbf , mae_diff_svm_rbf, rmse_diff_svm_rbf,
cor_diff_svm_linear, tradrsq_diff_svm_linear , mae_diff_svm_linear, rmse_diff_svm_linear,
cor_diff_svm_poly, tradrsq_diff_svm_poly , mae_diff_svm_poly, rmse_diff_svm_poly,
cor_diff_random_forest, tradrsq_diff_random_forest , mae_diff_random_forest, rmse_diff_random_forest,
cor_diff_xgboost, tradrsq_diff_xgboost , mae_diff_xgboost, rmse_diff_xgboost))
}
5000 times and compute the performance statistics with the above function
set.seed(123456)
boot_all_resp_no_uni_enet <- furrr::future_map(pred_all_resp, ~boot::boot(data = .,
statistic = perfmatrics_diff_all_enet,
R = 5000,
# parallel="snow",
# ncpus=20,
#cl=cl
),
.options = furrr::furrr_options(seed = 123456))
saveRDS(boot_all_resp_no_uni_enet, paste0(anotherFold,'working_memory_tasks/windows/boot_all_resp_no_uni_enet_April_21_2022', '.RData'))
uni_var_results_process_enet <- function(model_input, pred_input, enet_input,resp_input){
roi_vec <- model_input$roi
roi_list <- map(roi_vec,function(roi_input=.){
roi_tibble <- select(pred_input,c(roi_input,resp_input ))%>%
mutate(ols_pred = enet_input$model_predict)
names(roi_tibble)<- c("uni_pred","model_resp","enet_pred")
return(roi_tibble)
})
names(roi_list)<- roi_vec
return(roi_list)
}
uni_fdr_results_enet <- pmap(list(univariate_model_pred,univariate_model_fdr,
enet_predicted_list,resp_names),~uni_var_results_process_enet(
model_input=..2,
pred_input=..1,
enet_input=..3,
resp_input=..4
))
uni_bonferroni_results_enet <- pmap(list(univariate_model_pred,univariate_model_bonferroni,
enet_predicted_list,resp_names),~uni_var_results_process_enet(
model_input=..2,
pred_input=..1,
enet_input=..3,
resp_input=..4
))
uni_fdr_results_gfactor_enet <- pmap(list(univariate_model_pred_gfactor,
univariate_model_fdr_gfactor,
enet_predicted_list_gfactor,cfa_resp_names),
~uni_var_results_process_enet(
model_input=..2,
pred_input=..1,
enet_input=..3,
resp_input=..4
))
uni_bonferroni_results_gfactor_enet <- pmap(list(univariate_model_pred_gfactor,
univariate_model_bonferroni_gfactor,
enet_predicted_list_gfactor,cfa_resp_names),~uni_var_results_process_enet(
model_input=..2,
pred_input=..1,
enet_input=..3,
resp_input=..4
))
uni_fdr_all_enet <- append(uni_fdr_results_enet,uni_fdr_results_gfactor_enet)
uni_bonferroni_all_enet <- append(uni_bonferroni_results_enet,uni_bonferroni_results_gfactor_enet)
perfmatrics_diff_uni_enet <-function(data,i){
cor_enet <- cor(data$enet_pred[i],
data$model_resp[i],
use = "pairwise.complete.obs")
tradrsq_enet <- yardstick::rsq_trad(data=data,
truth=.data$model_resp[i],
estimate=.data$enet_pred[i])
mae_enet <- yardstick::mae(data =data,
truth=.data$model_resp[i],
estimate=.data$enet_pred[i])
rmse_enet <- yardstick::rmse(data =data,
truth=.data$model_resp[i],
estimate=.data$enet_pred[i])
cor_uni <- cor(data$uni_pred[i],
data$model_resp[i],
use = "pairwise.complete.obs")
tradrsq_uni <- yardstick::rsq_trad(data=data,
truth=.data$model_resp[i],
estimate=.data$uni_pred[i])
mae_uni <- yardstick::mae(data =data,
truth=.data$model_resp[i],
estimate=.data$uni_pred[i])
rmse_uni <- yardstick::rmse(data =data,
truth=.data$model_resp[i],
estimate=.data$uni_pred[i])
cor_diff_uni <- cor_uni-cor_enet
tradrsq_diff_uni <- tradrsq_uni$.estimate-tradrsq_enet$.estimate
mae_diff_uni <- mae_uni$.estimate-mae_enet$.estimate
rmse_diff_uni <- rmse_uni$.estimate-rmse_enet$.estimate
return(c(cor_diff_uni, tradrsq_diff_uni , mae_diff_uni, rmse_diff_uni))
}
bootstrapped difference of univariates
boot_uni_diff_fdr_enet<-map(uni_fdr_all_enet,~boot_diff_uni(data_input=.,
metric_input =perfmatrics_diff_uni_enet ))
boot_uni_diff_bonferroni_enet <-map(uni_bonferroni_all_enet,~boot_diff_uni(data_input=.,
metric_input =perfmatrics_diff_uni_enet ))
boot_diff_uni_all_enet <- list(fdr=boot_uni_diff_fdr_enet,bonferroni=boot_uni_diff_bonferroni_enet)
saveRDS(boot_diff_uni_all_enet, paste0(anotherFold,'working_memory_tasks/boot_diff_uni_all_enet_April_21_2022', '.RData'))
process the results
uni_fdr_diff_enet <- map2(.x=resp_all,.y=boot_uni_diff_fdr_enet,~uni_boot_results_processing(data_input=.y,
resp_input=.x,
algor_input="FDR"))
uni_bonferroni_diff_enet <- map2(.x=resp_all,.y=boot_uni_diff_bonferroni_enet
,~uni_boot_results_processing(data_input=.y,
resp_input=.x,
algor_input="Bonferroni"))
theme_set(theme_ggdist())
boot_diff_result_process_enet<- function(boot_input,resp_input){
boot_output <- boot_input[[resp_input]]
cor_diff_ols <- tibble(value = boot_output$t[,1],algorithm = "OLS")
tradrsq_diff_ols<- tibble(value = boot_output$t[,2],algorithm = "OLS")
mae_diff_ols<- tibble(value = boot_output$t[,3],algorithm = "OLS")
rmse_diff_ols<- tibble(value = boot_output$t[,4],algorithm = "OLS")
cor_diff_svm_rbf<- tibble(value = boot_output$t[,5],algorithm = "RBF\nSVM")
tradrsq_diff_svm_rbf <- tibble(value = boot_output$t[,6],algorithm = "RBF\nSVM")
mae_diff_svm_rbf<- tibble(value = boot_output$t[,7],algorithm = "RBF\nSVM")
rmse_diff_svm_rbf<- tibble(value = boot_output$t[,8],algorithm = "RBF\nSVM")
cor_diff_svm_linear<- tibble(value = boot_output$t[,9],algorithm = "Linear\nSVM")
tradrsq_diff_svm_linear <- tibble(value = boot_output$t[,10],algorithm = "Linear\nSVM")
mae_diff_svm_linear<- tibble(value = boot_output$t[,11],algorithm = "Linear\nSVM")
rmse_diff_svm_linear<- tibble(value = boot_output$t[,12],algorithm = "Linear\nSVM")
cor_diff_svm_poly<- tibble(value = boot_output$t[,13],algorithm = "Polynomial\nSVM")
tradrsq_diff_svm_poly<- tibble(value = boot_output$t[,14],algorithm = "Polynomial\nSVM")
mae_diff_svm_poly<- tibble(value = boot_output$t[,15],algorithm = "Polynomial\nSVM")
rmse_diff_svm_poly<- tibble(value = boot_output$t[,16],algorithm = "Polynomial\nSVM")
cor_diff_random_forest<- tibble(value = boot_output$t[,17],algorithm = "Random\nForest")
tradrsq_diff_random_forest <- tibble(value = boot_output$t[,18],algorithm = "Random\nForest")
mae_diff_random_forest<- tibble(value = boot_output$t[,19],algorithm = "Random\nForest")
rmse_diff_random_forest<- tibble(value = boot_output$t[,20],algorithm = "Random\nForest")
cor_diff_xgboost<- tibble(value = boot_output$t[,21],algorithm = "Xgboost")
tradrsq_diff_xgboost<- tibble(value = boot_output$t[,22],algorithm = "Xgboost")
mae_diff_xgboost<- tibble(value = boot_output$t[,23],algorithm = "Xgboost")
rmse_diff_xgboost<- tibble(value = boot_output$t[,24],algorithm = "Xgboost")
corr_all <- bind_rows(cor_diff_svm_poly,cor_diff_random_forest,cor_diff_xgboost,cor_diff_ols,cor_diff_svm_rbf,cor_diff_svm_linear)%>%
mutate(response = resp_plotting_all$short_name[which(resp_plotting_all$response==resp_input)])
tradrsq_all <- bind_rows(tradrsq_diff_svm_poly,tradrsq_diff_random_forest,tradrsq_diff_xgboost,
tradrsq_diff_ols,tradrsq_diff_svm_rbf,tradrsq_diff_svm_linear)%>%
mutate(response = resp_plotting_all$short_name[which(resp_plotting_all$response==resp_input)])
mae_all <- bind_rows(mae_diff_svm_poly,mae_diff_random_forest,mae_diff_xgboost,mae_diff_ols,mae_diff_svm_rbf,mae_diff_svm_linear)%>%
mutate(response = resp_plotting_all$short_name[which(resp_plotting_all$response==resp_input)])
rmse_all <- bind_rows(rmse_diff_svm_poly,rmse_diff_random_forest,rmse_diff_xgboost,rmse_diff_ols,
rmse_diff_svm_rbf,rmse_diff_svm_linear)%>%
mutate(response = resp_plotting_all$short_name[which(resp_plotting_all$response==resp_input)])
return(list(Correlation = corr_all,Traditional_Rsquare=tradrsq_all,MAE=mae_all,RMSE =rmse_all ))
}
boot_diff_nouni_enet <- map(resp_all,~boot_diff_result_process_enet(boot_input=boot_all_resp_no_uni_enet,resp_input=.))
#names(boot_diff_nouni[[12]])<- names(boot_diff_nouni[[11]])
boot_corr_diff_nouni_enet <- map(boot_diff_nouni_enet,"Correlation")%>%
do.call(rbind,.)
boot_cor_diff_fdr_enet <- map(uni_fdr_diff_enet,"Correlation")%>%
do.call(rbind,.)
boot_cor_diff_bonferroni_enet <- map(uni_bonferroni_diff_enet,"Correlation")%>%
do.call(rbind,.)
boot_cor_diff_enet <- boot_corr_diff_nouni_enet%>%
bind_rows(boot_cor_diff_fdr_enet)%>%
bind_rows(boot_cor_diff_bonferroni_enet)%>%
mutate(algorithm = as.factor(algorithm))%>%
mutate(algorithm = factor(algorithm,levels =c ("FDR","Bonferroni","OLS",
"Random\nForest","Xgboost",
"Linear\nSVM",
"Polynomial\nSVM" ,"RBF\nSVM")))%>%
mutate(resp_factor= as.factor(response))%>%
mutate(resp_factor = factor(response,levels =c("Pattern Speed", "Audi Verbal",
"Flanker","Seq Memory",
"Card Sort", # "Cog Flex",
"Little Man",
"List Work Mem","Matrix Reason",
"Reading Recog","Pic Vocab",
"2-back Work Mem","gfactor" )))
boot_rsq_diff_nouni_enet <- map(boot_diff_nouni_enet,"Traditional_Rsquare")%>%
do.call(rbind,.)
boot_rsq_diff_fdr_enet <- map(uni_fdr_diff_enet,"Traditional_Rsquare")%>%
do.call(rbind,.)
boot_rsq_diff_bonferroni_enet <- map(uni_bonferroni_diff_enet,"Traditional_Rsquare")%>%
do.call(rbind,.)
boot_rsq_diff_enet <- boot_rsq_diff_nouni_enet%>%
bind_rows(boot_rsq_diff_fdr_enet)%>%
bind_rows(boot_rsq_diff_bonferroni_enet)%>%
mutate(algorithm = as.factor(algorithm))%>%
mutate(algorithm = factor(algorithm,levels =c ("FDR","Bonferroni","OLS",
"Random\nForest","Xgboost",
"Linear\nSVM",
"Polynomial\nSVM" ,"RBF\nSVM")))%>%
mutate(resp_factor= as.factor(response))%>%
mutate(resp_factor = factor(response,levels =c("Pattern Speed", "Audi Verbal",
"Flanker","Seq Memory",
"Card Sort", # "Cog Flex",
"Little Man",
"List Work Mem","Matrix Reason",
"Reading Recog","Pic Vocab",
"2-back Work Mem","gfactor" )))
boot_mae_diff_nouni_enet <- map(boot_diff_nouni_enet,"MAE")%>%
do.call(rbind,.)
boot_mae_diff_fdr_enet <- map(uni_fdr_diff_enet,"MAE")%>%
do.call(rbind,.)
boot_mae_diff_bonferroni_enet <- map(uni_bonferroni_diff_enet,"MAE")%>%
do.call(rbind,.)
boot_mae_diff_enet <- boot_mae_diff_nouni_enet%>%
bind_rows(boot_mae_diff_fdr_enet)%>%
bind_rows(boot_mae_diff_bonferroni_enet)%>%
mutate(algorithm = as.factor(algorithm))%>%
mutate(algorithm = factor(algorithm,levels =c ("FDR","Bonferroni","OLS",
"Random\nForest","Xgboost",
"Linear\nSVM",
"Polynomial\nSVM" ,"RBF\nSVM")))%>%
mutate(resp_factor= as.factor(response))%>%
mutate(resp_factor = factor(response,levels =c("Pattern Speed", "Audi Verbal",
"Flanker","Seq Memory",
"Card Sort", # "Cog Flex",
"Little Man",
"List Work Mem","Matrix Reason",
"Reading Recog","Pic Vocab",
"2-back Work Mem","gfactor" )))
boot_rmse_diff_nouni_enet <- map(boot_diff_nouni_enet,"RMSE")%>%
do.call(rbind,.)
boot_rmse_diff_fdr_enet <- map(uni_fdr_diff_enet,"RMSE")%>%
do.call(rbind,.)
boot_rmse_diff_bonferroni_enet <- map(uni_bonferroni_diff_enet,"RMSE")%>%
do.call(rbind,.)
boot_rmse_diff_enet <- boot_rmse_diff_nouni_enet%>%
bind_rows(boot_rmse_diff_fdr_enet)%>%
bind_rows(boot_rmse_diff_bonferroni_enet)%>%
mutate(algorithm = as.factor(algorithm))%>%
mutate(algorithm = factor(algorithm,levels =c ("FDR","Bonferroni","OLS",
"Random\nForest","Xgboost",
"Linear\nSVM",
"Polynomial\nSVM" ,"RBF\nSVM")))%>%
mutate(resp_factor= as.factor(response))%>%
mutate(resp_factor = factor(response,levels =c("Pattern Speed", "Audi Verbal",
"Flanker","Seq Memory",
"Card Sort", # "Cog Flex",
"Little Man",
"List Work Mem","Matrix Reason",
"Reading Recog","Pic Vocab",
"2-back Work Mem","gfactor" )))
boot_diff_metric_enet<- list(Correlation=boot_cor_diff_enet,
Traditional_Rsquare=boot_rsq_diff_enet,
MAE= boot_mae_diff_enet,
RMSE =boot_rmse_diff_enet )
boot_plot_diff_list_enet <- map2(.x=boot_diff_metric_enet,
.y = metric_vec,
~ggplot(data=.x,
aes(y = value,
x = resp_factor,
color= algorithm)) +
stat_pointinterval(position = position_dodge(width = 2,
preserve = "single"))+
##hline instead of vline because of corrdinate flip
geom_hline(yintercept = 0, color = "grey55", linetype = "dashed",size=1.5) +
ggtitle(.y)+
coord_flip()+
theme(plot.title = element_text(size=15),
axis.title.x = element_blank(),
axis.title.y = element_blank(),
axis.text.x = element_text(size = 12),
axis.text.y = element_text(size=12),
legend.position = "bottom",
legend.text=element_text(size=12),
legend.title=element_text(size=15))+
guides(color = guide_legend(override.aes = list(size = 10)))+
scale_color_manual(values=color_boot_plot[-4],
labels = c ("FDR","Bonferroni",
"OLS",
"Random\nForest","Xgboost",
"Linear\nSVM",
"Polynomial\nSVM" ,"RBF\nSVM"))
)
boot_plot_diff_legend_enet <- get_legend(boot_plot_diff_list_enet[[1]])
title_boot_diff_plot_enet <- ggdraw() +
draw_label(
"Bootstrapped Distribution of the Differences in Predictive Performance:
Other Algorithms Minus Elastic Net
",
fontface = 'bold',
x = 0,
hjust = 0,
size=21
) +
theme(
# add margin on the left of the drawing canvas,
# so title is aligned with left edge of first plot
plot.margin = margin(0, 0, 0, 7)
)
plot_grid(title_boot_diff_plot_enet,
ggpubr::ggarrange(plotlist =boot_plot_diff_list_enet,
ncol = 2,
nrow = 2,
common.legend = TRUE,
legend = "bottom",
legend.grob = boot_plot_diff_legend_enet)
,nrow = 2 , rel_heights = c(0.1, 1))
plotting without univariate
boot_diff_metric_enetnouni <- map(boot_diff_metric_enet, ~filter(.x,.data[["algorithm"]]!="FDR")%>%
filter(.data[["algorithm"]]!="Bonferroni"))
boot_plot_diff_list_enetnouni <- map2(.x=boot_diff_metric_enetnouni,
.y = metric_vec,
~ggplot(data=.x,
aes(y = value,
x = resp_factor,
color= algorithm)) +
stat_pointinterval(position = position_dodge(width = 2,
preserve = "single"))+
##hline instead of vline because of corrdinate flip
geom_hline(yintercept = 0, color = "grey55", linetype = "dashed",size=1.5) +
ggtitle(.y)+
coord_flip()+
theme(plot.title = element_text(size=15),
axis.title.x = element_blank(),
axis.title.y = element_blank(),
axis.text.x = element_text(size = 12),
axis.text.y = element_text(size=12),
legend.position = "bottom",
legend.text=element_text(size=12),
legend.title=element_text(size=15))+
guides(color = guide_legend(override.aes = list(size = 10)))+
scale_color_manual(values=color_boot_plot[-c(1,2,4)],
labels = c ("OLS",
"Random\nForest","Xgboost",
"Linear\nSVM",
"Polynomial\nSVM" ,"RBF\nSVM"))
)
boot_plot_diff_legend_enetnouni <- get_legend(boot_plot_diff_list_enetnouni[[1]])
plot_grid(title_boot_diff_plot_enet,
ggpubr::ggarrange(plotlist =boot_plot_diff_list_enetnouni,
ncol = 2,
nrow = 2,
common.legend = TRUE,
legend = "bottom",
legend.grob = boot_plot_diff_legend_enetnouni)
,nrow = 2 , rel_heights = c(0.1, 1))
modality_vec_diff_enet <- unique(boot_diff_metric_enet[["Correlation"]][["modality"]])
kable_boot_metric_diff_enet <- boot_diff_metric_enet %>%
map(.,
~boot_quantile_processing_diff(data_input = .))
kable_metric_vars_diff_enet <- colnames(kable_boot_metric_diff_enet[[1]])
kable_boot_metric_vars_diff_enet <- kable_boot_metric_diff_enet %>%
map(.,~arrange(.,desc(match(response,
c("Pattern Speed",
"Audi Verbal",
"Flanker",
"Seq Memory",
"Card Sort", # "Cog Flex",
"Little Man",
"List Work Mem",
"Matrix Reason",
"Reading Recog",
"Pic Vocab",
"2-back Work Mem",
"gfactor" )))) %>%
mutate_if(is.numeric, round, 3) %>%
relocate(response,algorithm))
kable_boot_metric_vars_diff_enet[[1]] %>%
kableExtra::kbl(caption = paste0(metric_names[1])) %>%
kableExtra::kable_classic(full_width = F,
html_font = "Cambria")
response | algorithm | 0.025 | 0.5 | 0.975 | mean |
---|---|---|---|---|---|
gfactor | FDR | -0.448 | -0.339 | -0.194 | -0.333 |
gfactor | Bonferroni | -0.427 | -0.320 | -0.186 | -0.315 |
gfactor | OLS | -0.041 | -0.022 | -0.004 | -0.022 |
gfactor | Random Forest | -0.039 | -0.013 | 0.012 | -0.013 |
gfactor | Xgboost | -0.050 | -0.023 | 0.003 | -0.024 |
gfactor | Linear SVM | -0.014 | -0.004 | 0.007 | -0.004 |
gfactor | Polynomial SVM | -0.014 | -0.003 | 0.008 | -0.003 |
gfactor | RBF SVM | -0.013 | 0.001 | 0.016 | 0.002 |
2-back Work Mem | FDR | -0.536 | -0.421 | -0.274 | -0.416 |
2-back Work Mem | Bonferroni | -0.509 | -0.399 | -0.264 | -0.395 |
2-back Work Mem | OLS | -0.034 | -0.021 | -0.008 | -0.021 |
2-back Work Mem | Random Forest | -0.069 | -0.041 | -0.013 | -0.041 |
2-back Work Mem | Xgboost | -0.080 | -0.055 | -0.030 | -0.055 |
2-back Work Mem | Linear SVM | -0.024 | -0.014 | -0.004 | -0.014 |
2-back Work Mem | Polynomial SVM | -0.024 | -0.014 | -0.004 | -0.014 |
2-back Work Mem | RBF SVM | -0.014 | -0.003 | 0.009 | -0.003 |
Pic Vocab | FDR | -0.393 | -0.273 | -0.173 | -0.277 |
Pic Vocab | Bonferroni | -0.372 | -0.260 | -0.168 | -0.263 |
Pic Vocab | OLS | -0.063 | -0.039 | -0.016 | -0.039 |
Pic Vocab | Random Forest | -0.055 | -0.023 | 0.007 | -0.023 |
Pic Vocab | Xgboost | -0.046 | -0.018 | 0.010 | -0.018 |
Pic Vocab | Linear SVM | -0.040 | -0.022 | -0.004 | -0.022 |
Pic Vocab | Polynomial SVM | -0.040 | -0.019 | 0.002 | -0.019 |
Pic Vocab | RBF SVM | -0.040 | -0.019 | 0.001 | -0.020 |
Reading Recog | FDR | -0.348 | -0.234 | -0.124 | -0.234 |
Reading Recog | Bonferroni | -0.304 | -0.206 | -0.114 | -0.207 |
Reading Recog | OLS | -0.084 | -0.055 | -0.026 | -0.055 |
Reading Recog | Random Forest | -0.045 | -0.017 | 0.012 | -0.017 |
Reading Recog | Xgboost | -0.050 | -0.023 | 0.004 | -0.023 |
Reading Recog | Linear SVM | -0.040 | -0.024 | -0.008 | -0.024 |
Reading Recog | Polynomial SVM | -0.028 | -0.014 | 0.000 | -0.014 |
Reading Recog | RBF SVM | -0.027 | -0.011 | 0.006 | -0.011 |
Matrix Reason | FDR | -0.321 | -0.212 | -0.092 | -0.210 |
Matrix Reason | Bonferroni | -0.306 | -0.189 | -0.082 | -0.190 |
Matrix Reason | OLS | -0.039 | -0.009 | 0.021 | -0.009 |
Matrix Reason | Random Forest | -0.046 | -0.016 | 0.013 | -0.016 |
Matrix Reason | Xgboost | -0.055 | -0.027 | 0.001 | -0.027 |
Matrix Reason | Linear SVM | -0.017 | 0.002 | 0.021 | 0.002 |
Matrix Reason | Polynomial SVM | -0.042 | -0.009 | 0.021 | -0.009 |
Matrix Reason | RBF SVM | -0.018 | 0.001 | 0.019 | 0.001 |
List Work Mem | FDR | -0.318 | -0.221 | -0.114 | -0.218 |
List Work Mem | Bonferroni | -0.307 | -0.205 | -0.105 | -0.205 |
List Work Mem | OLS | -0.063 | -0.035 | -0.006 | -0.035 |
List Work Mem | Random Forest | -0.058 | -0.033 | -0.008 | -0.033 |
List Work Mem | Xgboost | -0.057 | -0.032 | -0.007 | -0.032 |
List Work Mem | Linear SVM | -0.038 | -0.022 | -0.005 | -0.022 |
List Work Mem | Polynomial SVM | -0.029 | -0.016 | -0.003 | -0.016 |
List Work Mem | RBF SVM | -0.029 | -0.016 | -0.003 | -0.016 |
Little Man | FDR | -0.290 | -0.192 | -0.098 | -0.192 |
Little Man | Bonferroni | -0.273 | -0.177 | -0.090 | -0.179 |
Little Man | OLS | -0.051 | -0.024 | 0.004 | -0.024 |
Little Man | Random Forest | -0.055 | -0.023 | 0.006 | -0.023 |
Little Man | Xgboost | -0.048 | -0.014 | 0.016 | -0.015 |
Little Man | Linear SVM | -0.021 | -0.004 | 0.013 | -0.004 |
Little Man | Polynomial SVM | -0.045 | -0.018 | 0.009 | -0.018 |
Little Man | RBF SVM | -0.018 | 0.003 | 0.023 | 0.003 |
Card Sort | FDR | -0.252 | -0.158 | -0.070 | -0.159 |
Card Sort | Bonferroni | -0.236 | -0.145 | -0.064 | -0.146 |
Card Sort | OLS | -0.062 | -0.025 | 0.013 | -0.024 |
Card Sort | Random Forest | -0.051 | -0.011 | 0.035 | -0.010 |
Card Sort | Xgboost | -0.053 | -0.012 | 0.032 | -0.011 |
Card Sort | Linear SVM | -0.055 | -0.029 | -0.003 | -0.029 |
Card Sort | Polynomial SVM | -0.021 | 0.002 | 0.026 | 0.002 |
Card Sort | RBF SVM | -0.028 | 0.005 | 0.041 | 0.005 |
Seq Memory | FDR | -0.212 | -0.105 | -0.008 | -0.106 |
Seq Memory | Bonferroni | -0.188 | -0.077 | 0.000 | -0.083 |
Seq Memory | OLS | -0.090 | -0.045 | -0.001 | -0.045 |
Seq Memory | Random Forest | -0.038 | -0.005 | 0.028 | -0.005 |
Seq Memory | Xgboost | -0.019 | 0.013 | 0.044 | 0.013 |
Seq Memory | Linear SVM | -0.031 | -0.005 | 0.022 | -0.005 |
Seq Memory | Polynomial SVM | -0.011 | 0.005 | 0.022 | 0.005 |
Seq Memory | RBF SVM | -0.011 | 0.006 | 0.023 | 0.006 |
Flanker | FDR | -0.263 | -0.137 | -0.028 | -0.139 |
Flanker | Bonferroni | -0.223 | -0.101 | -0.015 | -0.106 |
Flanker | OLS | -0.113 | -0.071 | -0.030 | -0.071 |
Flanker | Random Forest | -0.059 | -0.018 | 0.023 | -0.018 |
Flanker | Xgboost | -0.062 | -0.028 | 0.006 | -0.028 |
Flanker | Linear SVM | -0.047 | -0.022 | 0.001 | -0.022 |
Flanker | Polynomial SVM | -0.026 | -0.007 | 0.011 | -0.007 |
Flanker | RBF SVM | -0.092 | -0.054 | -0.015 | -0.054 |
Audi Verbal | FDR | -0.183 | -0.084 | 0.009 | -0.085 |
Audi Verbal | Bonferroni | -0.145 | -0.063 | 0.019 | -0.063 |
Audi Verbal | OLS | -0.084 | -0.048 | -0.012 | -0.048 |
Audi Verbal | Random Forest | -0.026 | 0.016 | 0.058 | 0.016 |
Audi Verbal | Xgboost | -0.043 | 0.000 | 0.044 | 0.000 |
Audi Verbal | Linear SVM | -0.038 | -0.016 | 0.007 | -0.015 |
Audi Verbal | Polynomial SVM | -0.015 | 0.008 | 0.031 | 0.008 |
Audi Verbal | RBF SVM | -0.019 | 0.008 | 0.035 | 0.008 |
Pattern Speed | FDR | -0.189 | -0.090 | -0.008 | -0.092 |
Pattern Speed | Bonferroni | -0.172 | -0.077 | -0.001 | -0.079 |
Pattern Speed | OLS | -0.079 | -0.027 | 0.026 | -0.027 |
Pattern Speed | Random Forest | -0.023 | 0.013 | 0.051 | 0.013 |
Pattern Speed | Xgboost | -0.034 | 0.006 | 0.046 | 0.006 |
Pattern Speed | Linear SVM | -0.047 | -0.010 | 0.027 | -0.010 |
Pattern Speed | Polynomial SVM | -0.024 | 0.000 | 0.025 | 0.000 |
Pattern Speed | RBF SVM | -0.023 | 0.003 | 0.028 | 0.003 |
kable_boot_metric_vars_diff_enet[[2]] %>%
kableExtra::kbl(caption = paste0(metric_names[2])) %>%
kableExtra::kable_classic(full_width = F,
html_font = "Cambria")
response | algorithm | 0.025 | 0.5 | 0.975 | mean |
---|---|---|---|---|---|
gfactor | FDR | -0.220 | -0.176 | -0.122 | -0.175 |
gfactor | Bonferroni | -0.217 | -0.172 | -0.119 | -0.171 |
gfactor | OLS | -0.049 | -0.028 | -0.007 | -0.028 |
gfactor | Random Forest | -0.036 | -0.016 | 0.005 | -0.016 |
gfactor | Xgboost | -0.043 | -0.021 | 0.001 | -0.021 |
gfactor | Linear SVM | -0.014 | -0.005 | 0.005 | -0.005 |
gfactor | Polynomial SVM | -0.014 | -0.004 | 0.006 | -0.004 |
gfactor | RBF SVM | -0.011 | 0.000 | 0.013 | 0.001 |
2-back Work Mem | FDR | -0.293 | -0.250 | -0.197 | -0.249 |
2-back Work Mem | Bonferroni | -0.289 | -0.246 | -0.192 | -0.245 |
2-back Work Mem | OLS | -0.037 | -0.020 | -0.005 | -0.021 |
2-back Work Mem | Random Forest | -0.067 | -0.044 | -0.020 | -0.044 |
2-back Work Mem | Xgboost | -0.074 | -0.053 | -0.032 | -0.053 |
2-back Work Mem | Linear SVM | -0.025 | -0.014 | -0.003 | -0.014 |
2-back Work Mem | Polynomial SVM | -0.024 | -0.013 | -0.002 | -0.013 |
2-back Work Mem | RBF SVM | -0.017 | -0.003 | 0.010 | -0.003 |
Pic Vocab | FDR | -0.152 | -0.117 | -0.080 | -0.116 |
Pic Vocab | Bonferroni | -0.150 | -0.115 | -0.078 | -0.115 |
Pic Vocab | OLS | -0.062 | -0.039 | -0.018 | -0.039 |
Pic Vocab | Random Forest | -0.038 | -0.019 | 0.001 | -0.019 |
Pic Vocab | Xgboost | -0.031 | -0.013 | 0.005 | -0.013 |
Pic Vocab | Linear SVM | -0.040 | -0.022 | -0.006 | -0.022 |
Pic Vocab | Polynomial SVM | -0.034 | -0.017 | 0.000 | -0.017 |
Pic Vocab | RBF SVM | -0.035 | -0.018 | -0.001 | -0.018 |
Reading Recog | FDR | -0.124 | -0.092 | -0.058 | -0.092 |
Reading Recog | Bonferroni | -0.119 | -0.087 | -0.054 | -0.087 |
Reading Recog | OLS | -0.069 | -0.043 | -0.019 | -0.043 |
Reading Recog | Random Forest | -0.026 | -0.011 | 0.004 | -0.011 |
Reading Recog | Xgboost | -0.030 | -0.016 | -0.002 | -0.016 |
Reading Recog | Linear SVM | -0.028 | -0.016 | -0.005 | -0.016 |
Reading Recog | Polynomial SVM | -0.023 | -0.013 | -0.002 | -0.013 |
Reading Recog | RBF SVM | -0.022 | -0.011 | 0.000 | -0.011 |
Matrix Reason | FDR | -0.108 | -0.075 | -0.038 | -0.074 |
Matrix Reason | Bonferroni | -0.106 | -0.071 | -0.035 | -0.071 |
Matrix Reason | OLS | -0.043 | -0.017 | 0.007 | -0.017 |
Matrix Reason | Random Forest | -0.025 | -0.009 | 0.007 | -0.009 |
Matrix Reason | Xgboost | -0.033 | -0.017 | -0.002 | -0.017 |
Matrix Reason | Linear SVM | -0.011 | 0.000 | 0.011 | 0.000 |
Matrix Reason | Polynomial SVM | -0.027 | -0.007 | 0.011 | -0.007 |
Matrix Reason | RBF SVM | -0.011 | 0.000 | 0.010 | -0.001 |
List Work Mem | FDR | -0.108 | -0.079 | -0.047 | -0.079 |
List Work Mem | Bonferroni | -0.107 | -0.077 | -0.045 | -0.076 |
List Work Mem | OLS | -0.061 | -0.036 | -0.012 | -0.036 |
List Work Mem | Random Forest | -0.031 | -0.017 | -0.005 | -0.017 |
List Work Mem | Xgboost | -0.033 | -0.018 | -0.004 | -0.018 |
List Work Mem | Linear SVM | -0.025 | -0.014 | -0.003 | -0.014 |
List Work Mem | Polynomial SVM | -0.020 | -0.012 | -0.003 | -0.012 |
List Work Mem | RBF SVM | -0.020 | -0.011 | -0.002 | -0.011 |
Little Man | FDR | -0.092 | -0.064 | -0.035 | -0.064 |
Little Man | Bonferroni | -0.090 | -0.062 | -0.034 | -0.062 |
Little Man | OLS | -0.049 | -0.026 | -0.005 | -0.027 |
Little Man | Random Forest | -0.027 | -0.013 | 0.001 | -0.013 |
Little Man | Xgboost | -0.024 | -0.008 | 0.006 | -0.009 |
Little Man | Linear SVM | -0.026 | -0.009 | 0.006 | -0.010 |
Little Man | Polynomial SVM | -0.034 | -0.015 | 0.002 | -0.015 |
Little Man | RBF SVM | -0.016 | -0.001 | 0.012 | -0.001 |
Card Sort | FDR | -0.068 | -0.045 | -0.021 | -0.045 |
Card Sort | Bonferroni | -0.067 | -0.043 | -0.020 | -0.043 |
Card Sort | OLS | -0.060 | -0.031 | -0.004 | -0.031 |
Card Sort | Random Forest | -0.020 | -0.004 | 0.015 | -0.003 |
Card Sort | Xgboost | -0.021 | -0.005 | 0.012 | -0.005 |
Card Sort | Linear SVM | -0.029 | -0.014 | 0.000 | -0.014 |
Card Sort | Polynomial SVM | -0.009 | 0.000 | 0.009 | 0.000 |
Card Sort | RBF SVM | -0.011 | 0.002 | 0.016 | 0.002 |
Seq Memory | FDR | -0.045 | -0.023 | -0.001 | -0.023 |
Seq Memory | Bonferroni | -0.042 | -0.020 | 0.001 | -0.020 |
Seq Memory | OLS | -0.088 | -0.057 | -0.028 | -0.057 |
Seq Memory | Random Forest | -0.015 | -0.003 | 0.009 | -0.003 |
Seq Memory | Xgboost | -0.007 | 0.004 | 0.014 | 0.004 |
Seq Memory | Linear SVM | -0.033 | -0.015 | 0.003 | -0.015 |
Seq Memory | Polynomial SVM | -0.011 | -0.002 | 0.008 | -0.002 |
Seq Memory | RBF SVM | -0.011 | -0.002 | 0.008 | -0.002 |
Flanker | FDR | -0.065 | -0.038 | -0.012 | -0.038 |
Flanker | Bonferroni | -0.060 | -0.033 | -0.009 | -0.033 |
Flanker | OLS | -0.092 | -0.060 | -0.031 | -0.061 |
Flanker | Random Forest | -0.022 | -0.008 | 0.007 | -0.008 |
Flanker | Xgboost | -0.024 | -0.012 | 0.001 | -0.012 |
Flanker | Linear SVM | -0.034 | -0.019 | -0.004 | -0.019 |
Flanker | Polynomial SVM | -0.031 | -0.016 | -0.001 | -0.016 |
Flanker | RBF SVM | -0.049 | -0.030 | -0.011 | -0.031 |
Audi Verbal | FDR | -0.038 | -0.013 | 0.013 | -0.013 |
Audi Verbal | Bonferroni | -0.034 | -0.010 | 0.015 | -0.010 |
Audi Verbal | OLS | -0.095 | -0.068 | -0.041 | -0.068 |
Audi Verbal | Random Forest | -0.008 | 0.008 | 0.024 | 0.008 |
Audi Verbal | Xgboost | -0.020 | -0.001 | 0.019 | -0.001 |
Audi Verbal | Linear SVM | -0.027 | -0.015 | -0.002 | -0.015 |
Audi Verbal | Polynomial SVM | -0.008 | 0.003 | 0.015 | 0.003 |
Audi Verbal | RBF SVM | -0.011 | 0.002 | 0.014 | 0.002 |
Pattern Speed | FDR | -0.033 | -0.018 | -0.003 | -0.018 |
Pattern Speed | Bonferroni | -0.032 | -0.016 | -0.002 | -0.016 |
Pattern Speed | OLS | -0.062 | -0.032 | -0.003 | -0.032 |
Pattern Speed | Random Forest | -0.004 | 0.006 | 0.016 | 0.006 |
Pattern Speed | Xgboost | -0.007 | 0.003 | 0.013 | 0.003 |
Pattern Speed | Linear SVM | -0.022 | -0.005 | 0.011 | -0.005 |
Pattern Speed | Polynomial SVM | -0.006 | 0.001 | 0.007 | 0.001 |
Pattern Speed | RBF SVM | -0.005 | 0.001 | 0.007 | 0.001 |
kable_boot_metric_vars_diff_enet[[3]] %>%
kableExtra::kbl(caption = paste0(metric_names[3])) %>%
kableExtra::kable_classic(full_width = F,
html_font = "Cambria")
response | algorithm | 0.025 | 0.5 | 0.975 | mean |
---|---|---|---|---|---|
gfactor | FDR | 0.045 | 0.070 | 0.094 | 0.070 |
gfactor | Bonferroni | 0.044 | 0.068 | 0.092 | 0.068 |
gfactor | OLS | 0.002 | 0.013 | 0.023 | 0.013 |
gfactor | Random Forest | -0.006 | 0.004 | 0.015 | 0.004 |
gfactor | Xgboost | -0.002 | 0.009 | 0.020 | 0.009 |
gfactor | Linear SVM | -0.005 | 0.001 | 0.006 | 0.001 |
gfactor | Polynomial SVM | -0.005 | 0.000 | 0.005 | 0.000 |
gfactor | RBF SVM | -0.009 | -0.003 | 0.004 | -0.003 |
2-back Work Mem | FDR | 0.097 | 0.125 | 0.151 | 0.125 |
2-back Work Mem | Bonferroni | 0.095 | 0.123 | 0.149 | 0.123 |
2-back Work Mem | OLS | -0.004 | 0.005 | 0.015 | 0.005 |
2-back Work Mem | Random Forest | 0.010 | 0.023 | 0.036 | 0.023 |
2-back Work Mem | Xgboost | 0.014 | 0.026 | 0.038 | 0.026 |
2-back Work Mem | Linear SVM | -0.002 | 0.004 | 0.009 | 0.004 |
2-back Work Mem | Polynomial SVM | -0.003 | 0.003 | 0.009 | 0.003 |
2-back Work Mem | RBF SVM | -0.011 | -0.003 | 0.004 | -0.003 |
Pic Vocab | FDR | 0.032 | 0.051 | 0.070 | 0.051 |
Pic Vocab | Bonferroni | 0.032 | 0.051 | 0.070 | 0.051 |
Pic Vocab | OLS | 0.007 | 0.017 | 0.029 | 0.018 |
Pic Vocab | Random Forest | 0.005 | 0.016 | 0.026 | 0.016 |
Pic Vocab | Xgboost | 0.001 | 0.010 | 0.019 | 0.010 |
Pic Vocab | Linear SVM | -0.004 | 0.004 | 0.013 | 0.004 |
Pic Vocab | Polynomial SVM | -0.004 | 0.004 | 0.013 | 0.004 |
Pic Vocab | RBF SVM | -0.004 | 0.004 | 0.013 | 0.004 |
Reading Recog | FDR | 0.018 | 0.034 | 0.049 | 0.034 |
Reading Recog | Bonferroni | 0.018 | 0.033 | 0.048 | 0.033 |
Reading Recog | OLS | 0.010 | 0.021 | 0.032 | 0.021 |
Reading Recog | Random Forest | -0.004 | 0.004 | 0.012 | 0.004 |
Reading Recog | Xgboost | 0.001 | 0.009 | 0.016 | 0.009 |
Reading Recog | Linear SVM | -0.005 | 0.001 | 0.007 | 0.001 |
Reading Recog | Polynomial SVM | -0.006 | 0.000 | 0.005 | 0.000 |
Reading Recog | RBF SVM | -0.006 | 0.000 | 0.005 | 0.000 |
Matrix Reason | FDR | 0.015 | 0.032 | 0.049 | 0.032 |
Matrix Reason | Bonferroni | 0.013 | 0.030 | 0.047 | 0.030 |
Matrix Reason | OLS | 0.002 | 0.014 | 0.025 | 0.014 |
Matrix Reason | Random Forest | -0.004 | 0.003 | 0.011 | 0.003 |
Matrix Reason | Xgboost | -0.002 | 0.005 | 0.013 | 0.005 |
Matrix Reason | Linear SVM | -0.006 | 0.000 | 0.006 | 0.000 |
Matrix Reason | Polynomial SVM | -0.004 | 0.005 | 0.014 | 0.005 |
Matrix Reason | RBF SVM | -0.006 | -0.001 | 0.004 | -0.001 |
List Work Mem | FDR | 0.013 | 0.029 | 0.045 | 0.029 |
List Work Mem | Bonferroni | 0.012 | 0.028 | 0.044 | 0.028 |
List Work Mem | OLS | 0.000 | 0.012 | 0.024 | 0.012 |
List Work Mem | Random Forest | -0.001 | 0.005 | 0.012 | 0.005 |
List Work Mem | Xgboost | -0.003 | 0.004 | 0.012 | 0.004 |
List Work Mem | Linear SVM | -0.001 | 0.005 | 0.010 | 0.005 |
List Work Mem | Polynomial SVM | -0.001 | 0.004 | 0.009 | 0.004 |
List Work Mem | RBF SVM | -0.001 | 0.004 | 0.009 | 0.004 |
Little Man | FDR | 0.017 | 0.032 | 0.047 | 0.032 |
Little Man | Bonferroni | 0.016 | 0.030 | 0.045 | 0.030 |
Little Man | OLS | -0.005 | 0.006 | 0.018 | 0.006 |
Little Man | Random Forest | -0.001 | 0.006 | 0.013 | 0.006 |
Little Man | Xgboost | -0.001 | 0.006 | 0.013 | 0.006 |
Little Man | Linear SVM | -0.007 | 0.000 | 0.009 | 0.001 |
Little Man | Polynomial SVM | -0.006 | 0.002 | 0.011 | 0.002 |
Little Man | RBF SVM | -0.009 | -0.002 | 0.005 | -0.002 |
Card Sort | FDR | 0.005 | 0.017 | 0.028 | 0.017 |
Card Sort | Bonferroni | 0.005 | 0.016 | 0.027 | 0.016 |
Card Sort | OLS | 0.005 | 0.018 | 0.032 | 0.019 |
Card Sort | Random Forest | -0.008 | -0.001 | 0.007 | -0.001 |
Card Sort | Xgboost | -0.005 | 0.002 | 0.008 | 0.002 |
Card Sort | Linear SVM | -0.002 | 0.005 | 0.013 | 0.005 |
Card Sort | Polynomial SVM | -0.005 | -0.001 | 0.003 | -0.001 |
Card Sort | RBF SVM | -0.006 | -0.001 | 0.005 | -0.001 |
Seq Memory | FDR | 0.005 | 0.016 | 0.027 | 0.016 |
Seq Memory | Bonferroni | 0.004 | 0.014 | 0.026 | 0.014 |
Seq Memory | OLS | 0.002 | 0.016 | 0.029 | 0.016 |
Seq Memory | Random Forest | -0.005 | 0.001 | 0.006 | 0.001 |
Seq Memory | Xgboost | -0.006 | -0.001 | 0.004 | -0.001 |
Seq Memory | Linear SVM | -0.004 | 0.004 | 0.013 | 0.004 |
Seq Memory | Polynomial SVM | -0.004 | 0.000 | 0.005 | 0.000 |
Seq Memory | RBF SVM | -0.005 | 0.000 | 0.005 | 0.000 |
Flanker | FDR | 0.008 | 0.020 | 0.032 | 0.020 |
Flanker | Bonferroni | 0.006 | 0.018 | 0.030 | 0.018 |
Flanker | OLS | 0.013 | 0.025 | 0.037 | 0.025 |
Flanker | Random Forest | -0.002 | 0.005 | 0.012 | 0.005 |
Flanker | Xgboost | -0.001 | 0.005 | 0.011 | 0.005 |
Flanker | Linear SVM | -0.009 | -0.001 | 0.007 | -0.001 |
Flanker | Polynomial SVM | -0.010 | -0.002 | 0.005 | -0.002 |
Flanker | RBF SVM | -0.007 | 0.002 | 0.011 | 0.002 |
Audi Verbal | FDR | -0.006 | 0.006 | 0.017 | 0.006 |
Audi Verbal | Bonferroni | -0.007 | 0.005 | 0.016 | 0.005 |
Audi Verbal | OLS | 0.010 | 0.021 | 0.033 | 0.021 |
Audi Verbal | Random Forest | -0.011 | -0.003 | 0.004 | -0.003 |
Audi Verbal | Xgboost | -0.009 | 0.001 | 0.010 | 0.001 |
Audi Verbal | Linear SVM | -0.005 | 0.001 | 0.008 | 0.001 |
Audi Verbal | Polynomial SVM | -0.009 | -0.003 | 0.002 | -0.003 |
Audi Verbal | RBF SVM | -0.008 | -0.002 | 0.003 | -0.002 |
Pattern Speed | FDR | 0.002 | 0.009 | 0.015 | 0.009 |
Pattern Speed | Bonferroni | 0.002 | 0.008 | 0.015 | 0.008 |
Pattern Speed | OLS | 0.004 | 0.017 | 0.030 | 0.017 |
Pattern Speed | Random Forest | -0.006 | -0.001 | 0.005 | -0.001 |
Pattern Speed | Xgboost | -0.006 | -0.002 | 0.003 | -0.002 |
Pattern Speed | Linear SVM | -0.006 | 0.002 | 0.010 | 0.002 |
Pattern Speed | Polynomial SVM | -0.004 | -0.001 | 0.002 | -0.001 |
Pattern Speed | RBF SVM | -0.004 | -0.001 | 0.002 | -0.001 |
kable_boot_metric_vars_diff_enet[[4]] %>%
kableExtra::kbl(caption = paste0(metric_names[4])) %>%
kableExtra::kable_classic(full_width = F,
html_font = "Cambria")
response | algorithm | 0.025 | 0.5 | 0.975 | mean |
---|---|---|---|---|---|
gfactor | FDR | 0.064 | 0.093 | 0.119 | 0.092 |
gfactor | Bonferroni | 0.062 | 0.091 | 0.117 | 0.090 |
gfactor | OLS | 0.004 | 0.015 | 0.026 | 0.015 |
gfactor | Random Forest | -0.002 | 0.009 | 0.020 | 0.009 |
gfactor | Xgboost | 0.000 | 0.012 | 0.024 | 0.012 |
gfactor | Linear SVM | -0.003 | 0.003 | 0.008 | 0.003 |
gfactor | Polynomial SVM | -0.003 | 0.002 | 0.008 | 0.002 |
gfactor | RBF SVM | -0.007 | 0.000 | 0.006 | 0.000 |
2-back Work Mem | FDR | 0.105 | 0.134 | 0.160 | 0.134 |
2-back Work Mem | Bonferroni | 0.103 | 0.132 | 0.159 | 0.132 |
2-back Work Mem | OLS | 0.003 | 0.012 | 0.021 | 0.012 |
2-back Work Mem | Random Forest | 0.012 | 0.025 | 0.039 | 0.025 |
2-back Work Mem | Xgboost | 0.018 | 0.030 | 0.042 | 0.030 |
2-back Work Mem | Linear SVM | 0.002 | 0.008 | 0.014 | 0.008 |
2-back Work Mem | Polynomial SVM | 0.001 | 0.008 | 0.014 | 0.008 |
2-back Work Mem | RBF SVM | -0.006 | 0.002 | 0.009 | 0.002 |
Pic Vocab | FDR | 0.040 | 0.060 | 0.080 | 0.060 |
Pic Vocab | Bonferroni | 0.039 | 0.059 | 0.079 | 0.059 |
Pic Vocab | OLS | 0.010 | 0.020 | 0.032 | 0.020 |
Pic Vocab | Random Forest | -0.001 | 0.010 | 0.021 | 0.010 |
Pic Vocab | Xgboost | -0.003 | 0.007 | 0.016 | 0.007 |
Pic Vocab | Linear SVM | 0.003 | 0.012 | 0.021 | 0.012 |
Pic Vocab | Polynomial SVM | 0.000 | 0.009 | 0.018 | 0.009 |
Pic Vocab | RBF SVM | 0.001 | 0.010 | 0.018 | 0.010 |
Reading Recog | FDR | 0.029 | 0.047 | 0.065 | 0.047 |
Reading Recog | Bonferroni | 0.027 | 0.045 | 0.062 | 0.045 |
Reading Recog | OLS | 0.010 | 0.022 | 0.035 | 0.022 |
Reading Recog | Random Forest | -0.002 | 0.006 | 0.014 | 0.006 |
Reading Recog | Xgboost | 0.001 | 0.008 | 0.016 | 0.008 |
Reading Recog | Linear SVM | 0.003 | 0.009 | 0.015 | 0.009 |
Reading Recog | Polynomial SVM | 0.001 | 0.007 | 0.012 | 0.007 |
Reading Recog | RBF SVM | 0.000 | 0.006 | 0.011 | 0.006 |
Matrix Reason | FDR | 0.019 | 0.038 | 0.056 | 0.038 |
Matrix Reason | Bonferroni | 0.018 | 0.036 | 0.055 | 0.036 |
Matrix Reason | OLS | -0.003 | 0.009 | 0.022 | 0.009 |
Matrix Reason | Random Forest | -0.003 | 0.005 | 0.013 | 0.005 |
Matrix Reason | Xgboost | 0.001 | 0.009 | 0.017 | 0.009 |
Matrix Reason | Linear SVM | -0.006 | 0.000 | 0.006 | 0.000 |
Matrix Reason | Polynomial SVM | -0.006 | 0.004 | 0.014 | 0.004 |
Matrix Reason | RBF SVM | -0.005 | 0.000 | 0.006 | 0.000 |
List Work Mem | FDR | 0.024 | 0.040 | 0.056 | 0.040 |
List Work Mem | Bonferroni | 0.023 | 0.039 | 0.055 | 0.039 |
List Work Mem | OLS | 0.006 | 0.019 | 0.031 | 0.019 |
List Work Mem | Random Forest | 0.002 | 0.009 | 0.016 | 0.009 |
List Work Mem | Xgboost | 0.002 | 0.009 | 0.017 | 0.009 |
List Work Mem | Linear SVM | 0.001 | 0.007 | 0.013 | 0.007 |
List Work Mem | Polynomial SVM | 0.001 | 0.006 | 0.011 | 0.006 |
List Work Mem | RBF SVM | 0.001 | 0.006 | 0.010 | 0.006 |
Little Man | FDR | 0.018 | 0.033 | 0.047 | 0.033 |
Little Man | Bonferroni | 0.017 | 0.032 | 0.046 | 0.032 |
Little Man | OLS | 0.002 | 0.014 | 0.025 | 0.014 |
Little Man | Random Forest | -0.001 | 0.007 | 0.014 | 0.007 |
Little Man | Xgboost | -0.003 | 0.004 | 0.012 | 0.004 |
Little Man | Linear SVM | -0.003 | 0.005 | 0.013 | 0.005 |
Little Man | Polynomial SVM | -0.001 | 0.008 | 0.017 | 0.008 |
Little Man | RBF SVM | -0.006 | 0.001 | 0.008 | 0.001 |
Card Sort | FDR | 0.011 | 0.023 | 0.035 | 0.023 |
Card Sort | Bonferroni | 0.010 | 0.022 | 0.034 | 0.022 |
Card Sort | OLS | 0.002 | 0.016 | 0.030 | 0.016 |
Card Sort | Random Forest | -0.007 | 0.002 | 0.010 | 0.002 |
Card Sort | Xgboost | -0.006 | 0.002 | 0.011 | 0.002 |
Card Sort | Linear SVM | 0.000 | 0.007 | 0.014 | 0.007 |
Card Sort | Polynomial SVM | -0.004 | 0.000 | 0.005 | 0.000 |
Card Sort | RBF SVM | -0.008 | -0.001 | 0.006 | -0.001 |
Seq Memory | FDR | 0.000 | 0.011 | 0.023 | 0.012 |
Seq Memory | Bonferroni | -0.001 | 0.010 | 0.021 | 0.010 |
Seq Memory | OLS | 0.014 | 0.028 | 0.043 | 0.028 |
Seq Memory | Random Forest | -0.005 | 0.001 | 0.007 | 0.001 |
Seq Memory | Xgboost | -0.007 | -0.002 | 0.003 | -0.002 |
Seq Memory | Linear SVM | -0.001 | 0.008 | 0.016 | 0.008 |
Seq Memory | Polynomial SVM | -0.004 | 0.001 | 0.005 | 0.001 |
Seq Memory | RBF SVM | -0.004 | 0.001 | 0.006 | 0.001 |
Flanker | FDR | 0.006 | 0.019 | 0.033 | 0.019 |
Flanker | Bonferroni | 0.004 | 0.017 | 0.030 | 0.017 |
Flanker | OLS | 0.016 | 0.030 | 0.045 | 0.030 |
Flanker | Random Forest | -0.004 | 0.004 | 0.012 | 0.004 |
Flanker | Xgboost | -0.001 | 0.006 | 0.013 | 0.006 |
Flanker | Linear SVM | 0.002 | 0.010 | 0.017 | 0.010 |
Flanker | Polynomial SVM | 0.001 | 0.008 | 0.016 | 0.008 |
Flanker | RBF SVM | 0.006 | 0.015 | 0.025 | 0.015 |
Audi Verbal | FDR | -0.006 | 0.006 | 0.019 | 0.006 |
Audi Verbal | Bonferroni | -0.007 | 0.005 | 0.018 | 0.005 |
Audi Verbal | OLS | 0.021 | 0.034 | 0.046 | 0.034 |
Audi Verbal | Random Forest | -0.012 | -0.004 | 0.004 | -0.004 |
Audi Verbal | Xgboost | -0.009 | 0.000 | 0.010 | 0.000 |
Audi Verbal | Linear SVM | 0.001 | 0.007 | 0.014 | 0.007 |
Audi Verbal | Polynomial SVM | -0.007 | -0.002 | 0.004 | -0.002 |
Audi Verbal | RBF SVM | -0.007 | -0.001 | 0.005 | -0.001 |
Pattern Speed | FDR | 0.002 | 0.009 | 0.017 | 0.009 |
Pattern Speed | Bonferroni | 0.001 | 0.008 | 0.016 | 0.008 |
Pattern Speed | OLS | 0.002 | 0.016 | 0.031 | 0.016 |
Pattern Speed | Random Forest | -0.008 | -0.003 | 0.002 | -0.003 |
Pattern Speed | Xgboost | -0.006 | -0.002 | 0.003 | -0.002 |
Pattern Speed | Linear SVM | -0.006 | 0.002 | 0.011 | 0.002 |
Pattern Speed | Polynomial SVM | -0.004 | -0.001 | 0.003 | 0.000 |
Pattern Speed | RBF SVM | -0.004 | -0.001 | 0.003 | -0.001 |
shapley computing function
library("fastshap")
##need to test this works for all the models
model_pred_fun <- function(object, newdata) {
pred_results <- predict(object, new_data = newdata)
return(pred_results$.pred)
}
model_shapley <- function(recipe_input, wf_input,resp_input,formula_input ,split_input= data_split){
train_input <- recipe_input %>% bake(new_data=NULL)
model_final_fit <-
wf_input%>%
parsnip::extract_spec_parsnip()%>%
parsnip::fit(data = train_input, formula= formula_input)
library(doFuture)
registerDoFuture()
plan(multisession(workers = 25))
## because of the false alarm in plyr running this chunk would give
doRNG::registerDoRNG()
model_shap <- model_final_fit %>%
fastshap::explain(X = train_input%>%
select(-resp_input)
%>% as.data.frame(),nsim= 1000, pred_wrapper =model_pred_fun
,.parallel=TRUE
)
return(model_shap)
}
Do not use future map for parallel, it would use 100% of the cpu
svm_linear_shap <- pmap(list(svm_linear_wfl_final_list,
recipe_list,
resp_names,
formula_list),
~model_shapley(recipe_input = ..2,
wf_input = ..1,
resp_input = ..3,
formula_input = ..4))
saveRDS(svm_linear_shap, paste0(anotherFold,'working_memory_tasks/svm_linear_shap', '.RData'))
svm_rbf_shap <- pmap(list(SVM_RBF_wfl_final_list,
recipe_list,
resp_names,
formula_list),
~model_shapley(recipe_input = ..2,
wf_input = ..1,
resp_input = ..3,
formula_input = ..4))
saveRDS(svm_rbf_shap, paste0(anotherFold,'working_memory_tasks/svm_rbf_shap', '.RData'))
svm_poly_shap <- pmap(list(svm_poly_wfl_final_list,
recipe_list,
resp_names,
formula_list),
~model_shapley(recipe_input = ..2,
wf_input = ..1,
resp_input = ..3,
formula_input = ..4))
saveRDS(svm_poly_shap, paste0(anotherFold,'working_memory_tasks/svm_poly_shap', '.RData'))
random_forest_shap <- pmap(list(random_forest_wfl_final_list,
recipe_list,
resp_names,
formula_list),
~model_shapley(recipe_input = ..2
,wf_input = ..1,
resp_input = ..3,
formula_input = ..4))
saveRDS(random_forest_shap, paste0(anotherFold,'working_memory_tasks/random_forest_shap', '.RData'))
Compute the Shapley value for Nback only
recipe_Nback= recipe_list[[resp_names[1]]]
formula_Nback = formula_list[[resp_names[1]]]
svm_linear_shap_Nback <- model_shapley(recipe_input = recipe_Nback,
wf_input = svm_linear_wfl_final_list[[resp_names[1]]],
resp_input = resp_names[1],
formula_input = formula_Nback)
saveRDS(svm_linear_shap_Nback, paste0(anotherFold,'working_memory_tasks/svm_linear_shap_nback_Dec_29_2021', '.RData'))
svm_rbf_shap_Nback <- model_shapley(recipe_input = recipe_Nback,
wf_input = SVM_RBF_wfl_final_list[[resp_names[1]]],
resp_input = resp_names[1],
formula_input = formula_Nback)
saveRDS(svm_rbf_shap_Nback, paste0(anotherFold,'working_memory_tasks/svm_rbf_shap_nback_Mar_22_2022', '.RData'))
svm_poly_shap_Nback <- model_shapley(recipe_input = recipe_Nback,
wf_input = svm_poly_wfl_final_list[[resp_names[1]]],
resp_input = resp_names[1],
formula_input = formula_Nback)
saveRDS(svm_poly_shap_Nback, paste0(anotherFold,'working_memory_tasks/svm_poly_shap_Nback_Dec_29_2021', '.RData'))
random_forest_shap_Nback <- model_shapley(recipe_input = recipe_Nback,
wf_input = random_forest_wfl_final_list[[resp_names[1]]],
resp_input = resp_names[1],
formula_input = formula_Nback)
saveRDS(random_forest_shap_Nback, paste0(anotherFold,'working_memory_tasks/random_forest_shap_Nback_Dec_29_2021', '.RData'))
The result list of Shapley values should have one entry:Nback.
These correlation plots used the following feature importance: univariate,OLS,Elastic Net = |coeff| RF, XG, Linear SVM, RBF SVM, Polynomial SVM = |SHAP|
We focus on plotting Nback and gfactor.
resp_names_nback <- resp_names[1]
##processing the shapley values
shap_value_precessing <- function(data_input, model_name){
data_output <- data_input%>%tibble::as_tibble()%>%
select(starts_with("roi_"))%>%
abs()%>% colSums()
names_output <- names(data_output)
out_tibble <- tibble(estimate= data_output%>% as.vector(), rois = names_output)
names(out_tibble) <- c(model_name,"rois")
return(out_tibble)
}
random_forest_shap_colsum <- random_forest_shap %>%
map(.,~shap_value_precessing(data_input = .,
model_name = "random_forest"))
svm_poly_shap_abs <- svm_poly_shap %>%
map(.,~shap_value_precessing(
data_input = .,
model_name = "svm_poly"))
svm_rbf_shap_abs <- svm_rbf_shap %>%
map(.,~shap_value_precessing(
data_input = .,
model_name = "svm_rbf"))
svm_linear_shap_abs <- svm_linear_shap %>%
map(.,~shap_value_precessing(data_input = .,
model_name = "svm_linear") )
xgboost_shap_abs <- xgboost_shap %>%
map(.,~shap_value_precessing(data_input = .,
model_name = "xgboost"))
### get the parameter estimations from OLS and enet
OLS_coefs <- OLS_fit%>% map(.,~broom::tidy(.)%>%
filter(term != "(Intercept)")%>%
rename(OLS_estimate = estimate, rois= term)%>%
select("rois","OLS_estimate"))
OLS_abs <- OLS_coefs %>% map(.,~select(.,"OLS_estimate")%>%
mutate(OLS = abs(OLS_estimate)))
OLS_all <- map2(.x=OLS_coefs,
.y=OLS_abs,
~left_join(.x,.y, by = "OLS_estimate"))
OLS_all <- map(OLS_all,
~select(.,-"OLS_estimate"))
enet_coefs <- enet_final_fit_list%>% map(.,~broom::tidy(.)%>%
filter(term != "(Intercept)")%>%
rename(enet_estimate = estimate,
rois= term)%>%
select("rois","enet_estimate"))
enet_abs <- enet_coefs %>% map(.,function(data_input = .){
abs_val = abs(data_input[["enet_estimate"]])
return(tibble(rois= data_input[["rois"]], enet = abs_val))
})
## extract the parameter estimation in simple linear regression
univar_fit <- map(simple_all_IQR,"model_broom")
univar_estimate <- univar_fit %>% map(.,function(data_input=.){
abs_val = data_input[["estimate"]] %>% abs()
return(tibble(rois= data_input[["roi"]], univariate = abs_val))
})
vi_all <- resp_names_nback %>% map(.,function(resp_input=.){
out_data <- plyr::join_all(list(univar_estimate[[resp_input]],
OLS_all[[resp_input]],
enet_abs[[resp_input]],
svm_linear_shap_abs[[resp_input]],
svm_poly_shap_abs[[resp_input]],
svm_rbf_shap_abs[[resp_input]],
random_forest_shap_colsum[[resp_input]],
xgboost_shap_abs[[resp_input]]
), by="rois", type="full")
return(out_data)
})
vi_all_rename <- vi_all %>% map(.,function(data_input=.){
names(data_input) = c("rois","Univariate","OLS","Elastic\nnet", "SVM\nlinear","SVM\nPloynomial", "SVM\nRBF", "Random\nForest","Xgboost")
return(data_input)
})
vi_all_rename %>% purrr::map(.,~select(.,-"rois")%>%
cor(method = "pearson")%>%
ggcorrplot::ggcorrplot())
## $TFMRI_NB_ALL_BEH_C2B_RATE
vi_all_rename %>% map(.,~select(.,-"rois")%>%
cor(method = "spearman")%>%
ggcorrplot::ggcorrplot())
## $TFMRI_NB_ALL_BEH_C2B_RATE
library(GGally)
ggpairs(vi_all_rename[[1]]%>% select(-"rois"),
upper = list(combo = "facetdensity"))+
theme(axis.text.x=NULL,
axis.text.y=NULL,
axis.title.y=NULL,
axis.title.x=NULL,
plot.title=NULL)
### change the font size
ggpairs(vi_all_rename[[1]]%>% select(-"rois"),
upper = list(continuous = GGally::wrap("cor",
method="spearman",
size = 4)),
lower = list(combo = "facetdensity"))+
theme(axis.text.x=element_text(angle = 90))
Plot the selected areas that is significant by the elastic net p-values
coefs_enet_nback <- list(TFMRI_NB_ALL_BEH_C2B_RATE=coefs_enet_all[[resp_names[1]]])
vi_all_select_rename <- map2(.x = vi_all_rename, .y = coefs_enet_nback,
~filter(.x, .x[["rois"]] %in% .y[["variable"]]))
vi_all_select_rename %>% purrr::map(.,~select(.,-"rois")%>%
cor(method = "pearson")%>%
ggcorrplot::ggcorrplot()+
ggtitle("Pearson correlation plot"))
## $TFMRI_NB_ALL_BEH_C2B_RATE
### plotting for the selected rois
vi_all_select_rename %>% map(.,~select(.,-"rois")%>%
cor(method = "spearman")%>%
ggcorrplot::ggcorrplot()+
ggtitle("Spearman's rank correlation coefficien plot"))
## $TFMRI_NB_ALL_BEH_C2B_RATE
ggpairs(vi_all_select_rename[[1]]%>% select(-"rois"),
upper = list(combo = "facetdensity"))+
theme(axis.text.x=NULL,
axis.text.y=NULL,
axis.title.y=NULL,
axis.title.x=NULL)+
ggtitle("Pearson correlation of the regions that predicted N-Back behavior\nwith eNetXplorer p<.05")
### change the font size
ggpairs(vi_all_select_rename[[1]]%>% select(-"rois"),
upper = list(continuous = GGally::wrap("cor",method="spearman", size = 4)),
lower = list(combo = "facetdensity"))+
theme(axis.text.x=element_text(angle = 90))+
ggtitle("Spearman's rank correlation of the regions that predicted N-Back behavior\nwith eNetXplorer p<.05")
create a rank across algorithms (with frankv)
TFMRI_NB_ALL_BEH_C2B_RATE_rank <- vi_all_rename$TFMRI_NB_ALL_BEH_C2B_RATE %>%
select(-rois) %>%
data.table::frankv(ties.method = "min")
vi_all_rename_TFMRI_NB_ALL_BEH_C2B_RATE_rank <-
cbind(vi_all_rename$TFMRI_NB_ALL_BEH_C2B_RATE, TFMRI_NB_ALL_BEH_C2B_RATE_rank)
select the top ranked regions
vi_all_rename_TFMRI_NB_ALL_BEH_C2B_RATE_rank %>%
filter(TFMRI_NB_ALL_BEH_C2B_RATE_rank > 137) %>%
select(-"rois",-"TFMRI_NB_ALL_BEH_C2B_RATE_rank") %>%
ggpairs(
upper = list(continuous = GGally::wrap("cor",method="pearson", size = 4)),
lower = list(combo = "facetdensity"))+
theme(axis.text.x=element_text(angle = 90))+
ggtitle("Pearson correlation of the top 30 regions that predicted N-Back Performance")
vi_all_rename_TFMRI_NB_ALL_BEH_C2B_RATE_rank %>%
filter(TFMRI_NB_ALL_BEH_C2B_RATE_rank > 137) %>%
select(-"rois",-"TFMRI_NB_ALL_BEH_C2B_RATE_rank") %>%
ggpairs(
upper = list(continuous = GGally::wrap("cor",method="spearman", size = 4)),
lower = list(combo = "facetdensity"))+
theme(axis.text.x=element_text(angle = 90))+
ggtitle("Spearman's rank correlation of the top 30 regions that predicted N-Back Performance")
svm_rbf_shap_gfactor <- pmap(list(SVM_RBF_wfl_final_list_gfactor,
recipe_gfactor,
cfa_resp_names,
formula_gfactor),
~model_shapley(wf_input = ..1,
recipe_input = ..2,
resp_input = ..3,
formula_input = ..4))
saveRDS(svm_rbf_shap_gfactor, paste0(anotherFold,'working_memory_tasks/windows/svm_rbf_shap_gfactor_Mar_21_2022', '.RData'))
svm_linear_shap_gfactor <- pmap(list(svm_linear_wfl_final_list_gfactor,
recipe_gfactor,
cfa_resp_names,
formula_gfactor),
~model_shapley(wf_input = ..1,
recipe_input = ..2,
resp_input = ..3,
formula_input = ..4))
saveRDS(svm_linear_shap_gfactor, paste0(anotherFold,'working_memory_tasks/windows/svm_linear_shap_gfactor_Nov_08_2021', '.RData'))
random_forest_shap_gfactor <- pmap(list(random_forest_wfl_final_list_gfactor,
recipe_gfactor,
cfa_resp_names,
formula_gfactor),
~model_shapley(wf_input = ..1,
recipe_input = ..2,
resp_input = ..3,
formula_input = ..4))
saveRDS(random_forest_shap_gfactor, paste0(anotherFold,'working_memory_tasks/windows/random_forest_shap_gfactor_Nov_08_2021', '.RData'))
svm_poly_shap_gfactor <- pmap(list(svm_poly_wfl_final_list_gfactor,
recipe_gfactor,
cfa_resp_names,
formula_gfactor),
~model_shapley(wf_input = ..1,
recipe_input = ..2,
resp_input = ..3,
formula_input = ..4))
saveRDS(svm_poly_shap_gfactor, paste0(anotherFold,'working_memory_tasks/windows/svm_poly_shap_gfactor_Nov_04_2021', '.RData'))
random_forest_shap_colsum_gfactor <- random_forest_shap_gfactor %>%
map(.,~shap_value_precessing(data_input = .,
model_name = "random_forest"))
xgboost_shap_abs_gfactor <- xgboost_shap_gfactor %>%
map(.,~shap_value_precessing(data_input = .,
model_name = "xgboost") )
svm_linear_shap_abs_gfactor <- svm_linear_shap_gfactor %>%
map(.,~shap_value_precessing(data_input = .,
model_name = "svm_linear") )
svm_rbf_shap_abs_gfactor <- svm_rbf_shap_gfactor %>%
map(.,~shap_value_precessing(data_input = .,
model_name = "svm_rbf"))
svm_poly_shap_abs_gfactor <- svm_poly_shap_gfactor %>%
map(.,~shap_value_precessing(data_input = .,
model_name = "svm_poly") )
### get the parameter estimations from OLS and enet
OLS_coefs_gfactor <- OLS_fit_gfactor%>% map(.,~broom::tidy(.)%>%
filter(term != "(Intercept)")%>%
rename(OLS_estimate = estimate, rois= term)%>%
select("rois","OLS_estimate"))
OLS_abs_gfactor <- OLS_coefs_gfactor %>% map(.,~select(.,"OLS_estimate")%>%
mutate(OLS = abs(OLS_estimate)))
OLS_all_gfactor <- map2(.x=OLS_coefs_gfactor,.y=OLS_abs_gfactor,~left_join(.x,.y, by = "OLS_estimate"))
OLS_all_gfactor <- map(OLS_all_gfactor,~select(.,-"OLS_estimate"))
enet_coefs_gfactor <- enet_final_fit_list_gfactor%>% map(.,~broom::tidy(.)%>%
filter(term != "(Intercept)")%>%
rename(enet_estimate = estimate,
rois= term)%>%
select("rois","enet_estimate"))
enet_abs_gfactor <- enet_coefs_gfactor %>%
map(.,function(data_input = .){
abs_val = abs(data_input[["enet_estimate"]])
return(tibble(rois= data_input[["rois"]],
enet = abs_val))
})
## extract the parameter estimation in simple linear regression
univar_fit_gfactor <- map(simple_all_IQR_gfactor,
"model_broom")
univar_estimate_gfactor <- univar_fit_gfactor %>%
map(.,function(data_input=.){
abs_val = data_input[["estimate"]] %>%
abs()
return(tibble(rois= data_input[["roi"]],
univariate = abs_val))
})
vi_all_gfactor <- cfa_resp_names %>% map(.,function(resp_input=.){
out_data <- plyr::join_all(list(univar_estimate_gfactor[[resp_input]],
OLS_all_gfactor[[resp_input]],
enet_abs_gfactor[[resp_input]],
svm_linear_shap_abs_gfactor[[resp_input]],
svm_poly_shap_abs_gfactor[[resp_input]],
svm_rbf_shap_abs_gfactor[[resp_input]],
random_forest_shap_colsum_gfactor[[resp_input]],
xgboost_shap_abs_gfactor[[resp_input]]
), by="rois", type="full")
return(out_data)
})
vi_all_rename_gfactor <- vi_all_gfactor %>%
map(.,function(data_input=.){
names(data_input) = c("rois",
"Univariate",
"OLS",
"Elastic\nnet",
"SVM\nlinear",
"SVM\nPloynomial",
"SVM\nRBF",
"Random\nForest",
"Xgboost")
return(data_input)
})
vi_all_select_rename_gfactor <- map2(.x = vi_all_rename_gfactor,
.y = coefs_enet_gfactor,
~filter(.x, .x[["rois"]] %in% .y[["variable"]]))
vi_all_rename_gfactor %>% purrr::map(.,~select(.,-"rois")%>%
cor(method = "pearson")%>%
ggcorrplot::ggcorrplot()+
ggtitle("Pearson correlation coefficien polt for gfactor"))
## $gfactor
vi_all_rename_gfactor %>% map(.,~select(.,-"rois")%>%
cor(method = "spearman")%>%
ggcorrplot::ggcorrplot()+
ggtitle("Spearman's rank correlation coefficien plot for gfactor"))
## $gfactor
ggpairs(vi_all_rename_gfactor[[1]]%>% select(-"rois"),
upper = list(combo = "facetdensity"))+
theme(axis.text.x=NULL,
axis.text.y=NULL,
axis.title.y=NULL,
axis.title.x=NULL)+
ggtitle("Pearson correlation of feature importance for the g-factor")
### change the font size
ggpairs(vi_all_rename_gfactor[[1]]%>% select(-"rois"),
upper = list(continuous = GGally::wrap("cor",method="spearman", size = 4)),
lower = list(combo = "facetdensity"))+
theme(axis.text.x=element_text(angle = 90))+
ggtitle("Spearman's rank correlation of feature importance for the g-factor")
Plot the selected areas that is significant by the elastic net p-values
vi_all_select_rename_gfactor <- map2(.x = vi_all_rename_gfactor, .y = coefs_enet_gfactor,
~filter(.x, .x[["rois"]] %in% .y[["variable"]]))
vi_all_select_rename_gfactor %>% purrr::map(.,~select(.,-"rois")%>%
cor(method = "pearson")%>%
ggcorrplot::ggcorrplot()+
ggtitle("Pearson correlation plot"))
## $gfactor
### plotting for the selected rois
vi_all_select_rename_gfactor %>% map(.,~select(.,-"rois")%>%
cor(method = "spearman")%>%
ggcorrplot::ggcorrplot()+
ggtitle("Spearman's rank correlation coefficien plot"))
## $gfactor
ggpairs(vi_all_select_rename_gfactor[[1]]%>% select(-"rois"),
upper = list(combo = "facetdensity"))+
theme(axis.text.x=NULL,
axis.text.y=NULL,
axis.title.y=NULL,
axis.title.x=NULL)+
ggtitle("Pearson correlation of the regions that predicted the g-factor\nwith eNetXplorer p<.05")
### change the font size
ggpairs(vi_all_select_rename_gfactor[[1]]%>% select(-"rois"),
upper = list(continuous = GGally::wrap("cor",method="spearman", size = 4)),
lower = list(combo = "facetdensity"))+
theme(axis.text.x=element_text(angle = 90))+
ggtitle("Spearman's rank correlation of the regions that predicted g-factor\nwith eNetXplorer p<.05")
create a rank across algorithms (with frankv)
gfactor_rank <- vi_all_rename_gfactor[[1]] %>%
select(-rois) %>%
data.table::frankv(ties.method = "min")
vi_all_rename_gfactor_rank <-
cbind(vi_all_rename_gfactor[[1]], gfactor_rank)
read and process the output from Sripada 2019 paper
roi_table<- read.table(paste0(anotherFold,"working_memory_tasks/Destr_FS_cifti_index.txt"),header = FALSE)
roi_number <- read.table(paste0(anotherFold,"working_memory_tasks/WM11_2_0bk_destr.txt"),header = FALSE)
sub_roi_table <- read.csv(paste0(anotherFold,"working_memory_tasks/WM11_subcortex_FS.csv"),header = FALSE)%>%
rename( roi_names_other=V1, other_paper=V2)
roi_tibble <- tibble(roi_names_other = roi_table$V1, other_paper = roi_number$V1)%>%
mutate(rois = roi_names_other)
roi_tibble_test <- roi_tibble%>%
mutate(rois = str_replace_all(rois,"L_","lh_"))%>%
mutate(rois = str_replace_all(rois,"R_","rh_"))%>%
mutate(rois = str_replace_all(rois,"-","."))%>%
mutate(rois = paste0("roi_", rois))
vi_gfactor_joined <- left_join(roi_tibble_test,vi_all_gfactor$gfactor, by = "rois")
vi_gfactor_abs <- vi_gfactor_joined%>%
mutate(other_paper = abs(other_paper))
sub_roi_tibble <- sub_roi_table %>% tibble::as.tibble()%>%
rename(rois = V3)%>%
mutate(rois = paste0("roi_", rois))
sub_roi_tibble_joined <- left_join(sub_roi_tibble, vi_all_gfactor$gfactor, by = "rois")
sub_roi_tibble_abs <- sub_roi_tibble_joined%>%
mutate(other_paper = abs(other_paper))
other_paper_vi_all <- bind_rows(sub_roi_tibble_joined,vi_gfactor_joined)%>%
mutate(other_paper = abs(other_paper))
other_paper_vi_all_raw <- bind_rows(sub_roi_tibble_joined,vi_gfactor_joined)
gfactor_rank_other_paper <- other_paper_vi_all %>%
select(-rois) %>%
select(-roi_names_other)%>%
data.table::frankv(ties.method = "min")
vi_all_other_paper_gfactor_rank <-
cbind(other_paper_vi_all, gfactor_rank_other_paper)
vi_all_other_paper_gfactor_rank_name <- vi_all_other_paper_gfactor_rank
colnames(vi_all_other_paper_gfactor_rank) <- c("roi_names_other","Sripada\n2019","rois","Univariate","OLS","Elastic\nnet","SVM\nlinear","SVM\nPloynomial","SVM\nRBF","Random\nForest","Xgboost" ,"gfactor_rank_other_paper")
colnames(sub_roi_tibble_abs) <- c("roi_names_other","Sripada\n2019","rois","Univariate","OLS","Elastic\nnet","SVM\nlinear","SVM\nPloynomial","SVM\nRBF","Random\nForest","Xgboost" ,"gfactor_rank_other_paper")
colnames(vi_gfactor_abs) <- c("roi_names_other","Sripada\n2019","rois","Univariate","OLS","Elastic\nnet","SVM\nlinear","SVM\nPloynomial","SVM\nRBF","Random\nForest","Xgboost" ,"gfactor_rank_other_paper")
select the top ranked regions
vi_all_rename_gfactor_rank %>%
filter(gfactor_rank > 137) %>%
select(-"rois",-"gfactor_rank") %>%
ggpairs(
upper = list(continuous = GGally::wrap("cor",method="pearson", size = 4)),
lower = list(combo = "facetdensity"))+
theme(axis.text.x=element_text(angle = 90))+
ggtitle("Pearson correlation of the top 30 regions that predicted the G-Factor")
vi_all_rename_gfactor_rank %>%
filter(gfactor_rank > 137) %>%
select(-"rois",-"gfactor_rank") %>%
ggpairs(
upper = list(continuous = GGally::wrap("cor",method="spearman", size = 4)),
lower = list(combo = "facetdensity"))+
theme(axis.text.x=element_text(angle = 90))+
ggtitle("Spearman's rank correlation of the top 30 regions that predicted the G-Factor")
vi_all_other_paper_gfactor_rank %>%
# filter(gfactor_rank_other_paper > 137) %>%
select(-"rois",-"gfactor_rank_other_paper",-"roi_names_other") %>%
ggpairs(
upper = list(continuous = GGally::wrap("cor",method="spearman", size = 4)),
lower = list(combo = "facetdensity"))+
theme(axis.text.x=element_text(angle = 90))+
ggtitle("Spearman's rho of variable importance for the G-Factor: All regions")
vi_all_other_paper_gfactor_rank %>%
# filter(gfactor_rank_other_paper > 137) %>%
select(-"rois",-"gfactor_rank_other_paper",-"roi_names_other") %>%
ggpairs(
upper = list(continuous = GGally::wrap("cor",method="pearson", size = 4)),
lower = list(combo = "facetdensity"))+
theme(axis.text.x=element_text(angle = 90))+
ggtitle("Pearson's r of variable importance for the G-Factor: All regions")
correlation plot for subcortex only
sub_roi_tibble_abs %>%
# filter(gfactor_rank_other_paper > 137) %>%
select(-"rois",-"roi_names_other") %>%
ggpairs(
upper = list(continuous = GGally::wrap("cor",method="spearman", size = 4)),
lower = list(combo = "facetdensity"))+
theme(axis.text.x=element_text(angle = 90))+
ggtitle("Spearman's rho of variable importance for the G-Factor: Subcortical regions")
sub_roi_tibble_abs %>%
# filter(gfactor_rank_other_paper > 137) %>%
select(-"rois",-"roi_names_other") %>%
ggpairs(
upper = list(continuous = GGally::wrap("cor",method="pearson", size = 4)),
lower = list(combo = "facetdensity"))+
theme(axis.text.x=element_text(angle = 90))+
ggtitle("Pearson's r of variable importance for the G-Factor: Subcortical regions")
correlation plot for cortex only
vi_gfactor_abs %>%
# filter(gfactor_rank_other_paper > 137) %>%
select(-"rois",-"roi_names_other") %>%
ggpairs(
upper = list(continuous = GGally::wrap("cor",method="spearman", size = 4)),
lower = list(combo = "facetdensity"))+
theme(axis.text.x=element_text(angle = 90))+
ggtitle("Spearman's rho of variable importance for the G-Factor: Cortical regions")
vi_gfactor_abs %>%
# filter(gfactor_rank_other_paper > 137) %>%
select(-"rois",-"roi_names_other") %>%
ggpairs(
upper = list(continuous = GGally::wrap("cor",method="pearson", size = 4)),
lower = list(combo = "facetdensity"))+
theme(axis.text.x=element_text(angle = 90))+
ggtitle("Pearson's r of variable importance for the G-Factor: Cortical regions")
parameter estimate to the variable importance frame and plot all rois on the brain. Note for RBF SVM, polynomial SVM, linear SVM, random forest and xgboost the sum of absolute Shapley is used, while for mass univariate, OLS, enet and enetxplorer, the coeff is used. Coeff provides directionality
library(ggseg)
library(ggsegExtra)
library(ggsegDesterieux)
vi_all_select <- map2(.x = vi_all,
.y =coefs_enet_all ,
~filter(.x,
.x [["rois"]] %in% .y[["variable"]]))
vi_all_select_gfactor <- map2(.x = vi_all_gfactor,
.y =coefs_enet_gfactor ,
~filter(.x, .x [["rois"]] %in% .y[["variable"]]))
## adding Nback eNetXplorer fitted results to the variable importance frame
OLS_coefs_nback_prepare <- OLS_coefs[[resp_names[1]]]%>% rename(OLS = OLS_estimate)
enet_coefs_nback_prepare <- enet_coefs[[resp_names[1]]]%>% rename(enet = enet_estimate)
univar_coefs_fdr_nback_prepare <- univariate_model_fdr[[resp_names[1]]] %>%
filter(FDR < .05) %>%
select("roi","estimate")%>%
rename(rois = roi, FDR = estimate)
univar_coefs_bonf_nback_prepare <- univariate_model_fdr[[resp_names[1]]] %>%
filter(bonferroni < .05) %>%
select("roi","estimate")%>%
rename(rois = roi, bonferroni = estimate)
OLS_coefs_p05 <- OLS_fit%>% map(.,~broom::tidy(.) %>%
filter(term != "(Intercept)") %>%
filter(p.value < .05) %>%
rename(OLS_estimate = estimate, rois= term)%>%
select("rois","OLS_estimate"))
OLS_coefs_p05_nback_prepare <- OLS_coefs_p05[[resp_names[1]]]%>%
rename(OLS_p05 = OLS_estimate)
nrow(OLS_coefs_p05_nback_prepare)
## [1] 23
enetxplorer_coefs_nback_prepare <-
extract_tibble(fit_explorer_all[[resp_names[1]]],
alpha_index =
paste0("a",
best_enet_model_list[[resp_names[1]]]$mixture))%>%
filter(type == "Target")%>%
filter(pvalue < .05) %>%
select("variable","wmean")%>%
rename(rois = variable,eNetXplorer= wmean)
vi_all_nback <- plyr::join_all(list(univar_coefs_fdr_nback_prepare,
univar_coefs_bonf_nback_prepare,
OLS_coefs_nback_prepare,
OLS_coefs_p05_nback_prepare,
enet_coefs_nback_prepare,
enetxplorer_coefs_nback_prepare,
svm_linear_shap_abs[[resp_names[1]]],
svm_poly_shap_abs[[resp_names[1]]],
svm_rbf_shap_abs[[resp_names[1]]],
random_forest_shap_colsum[[resp_names[1]]],
xgboost_shap_abs[[resp_names[1]]]
), by="rois", type="full")
###get the right coefficients from mass univariate OLS, enet and enexplorer
OLS_coefs_gfactor_prepare <- OLS_coefs_gfactor[[cfa_resp_names[1]]]%>% rename(OLS = OLS_estimate)
enet_coefs_gfactor_prepare <- enet_coefs_gfactor[[cfa_resp_names[1]]]%>% rename(enet = enet_estimate)
univar_coefs_fdr_gfactor_prepare <- univariate_model_broom_gfactor[[cfa_resp_names[1]]] %>%
filter(FDR < .05) %>%
select("roi","estimate")%>%
rename(rois = roi, FDR = estimate)
univar_coefs_bonf_gfactor_prepare <- univariate_model_broom_gfactor[[cfa_resp_names[1]]] %>%
filter(bonferroni < .05) %>%
select("roi","estimate")%>%
rename(rois = roi, bonferroni = estimate)
OLS_coefs_p05_gfactor <- OLS_fit_gfactor%>% map(.,~broom::tidy(.) %>%
filter(term != "(Intercept)") %>%
filter(p.value < .05) %>%
rename(OLS_estimate = estimate, rois= term)%>%
select("rois","OLS_estimate"))
OLS_coefs_p05_gfactor_prepare <- OLS_coefs_p05_gfactor[[cfa_resp_names[1]]]%>%
rename(OLS_p05 = OLS_estimate)
nrow(OLS_coefs_p05_gfactor_prepare)
## [1] 23
enetxplorer_coefs_gfactor_prepare <- extract_tibble(fit_explorer_gfactor[[cfa_resp_names[1]]],
alpha_index = paste0("a",best_enet_model_list_gfactor[[cfa_resp_names[1]]]$mixture))%>%
filter(type == "Target")%>%
filter(pvalue < .05) %>%
select("variable","wmean")%>%
rename(rois = variable,
eNetXplorer= wmean)
vi_all_gfactor_enetxplorer <- plyr::join_all(list(univar_coefs_fdr_gfactor_prepare,
univar_coefs_bonf_gfactor_prepare,
OLS_coefs_gfactor_prepare,
OLS_coefs_p05_gfactor_prepare,
enet_coefs_gfactor_prepare,
enetxplorer_coefs_gfactor_prepare,
svm_linear_shap_abs_gfactor[[cfa_resp_names[1]]],
svm_poly_shap_abs_gfactor[[cfa_resp_names[1]]],
svm_rbf_shap_abs_gfactor[[cfa_resp_names[1]]],
random_forest_shap_colsum_gfactor[[cfa_resp_names[1]]],
xgboost_shap_abs_gfactor[[cfa_resp_names[1]]]
), by="rois", type="full")
vi_enetxplorer <-list( TFMRI_NB_ALL_BEH_C2B_RATE = vi_all_nback,
gfactor = vi_all_gfactor_enetxplorer)
brainPlot_names_eNetXplorer <- tibble(vec_names = colnames(vi_enetxplorer$TFMRI_NB_ALL_BEH_C2B_RATE[2:length(vi_enetxplorer$TFMRI_NB_ALL_BEH_C2B_RATE)]),
plotting_names = c("Mass-Univariate FDR-Corrected",
"Mass-Univariate Bonferroni-Corrected",
"OLS",
"OLS with p<.05",
"Elastic Net",
"eNetXplorer with p<.05",
"Linear SVM",
"Polynomial SVM",
"RBF SVM",
"Random Forest",
"XGBoost"))
brainPrepTibFunc <- function(vi_input,resp_input, algorithm_vec = brainPlot_names_eNetXplorer) {
brainPlotTib <- vi_input[[resp_input]] %>%
rename(label = rois) %>%
# mutate(.,label = str_replace_all(variable, str_type, '')) %>%
mutate(.,label = str_replace_all(label, '\\.', '-')) %>%
mutate(.,label = str_replace_all(label, 'Brain-Stem', 'brain-stem')) %>%
mutate(.,label = str_replace_all(label, 'Right-Cerebellum-Cortex', 'right-cerebellum-cortex')) %>%
mutate(.,label = str_replace_all(label, 'roi_', ''))
ggsegDesterieux_resp <- ggsegDesterieux::desterieux %>% as_tibble %>%
select(label) %>%
na.omit() %>%
left_join(brainPlotTib, by = "label")
ggsegAseg_resp <- ggseg::aseg$data %>% as_tibble %>%
select(label) %>%
na.omit() %>%
left_join(brainPlotTib, by = "label")
estimateCort_resp <-
purrr::map2(.x = algorithm_vec$vec_names,
.y = algorithm_vec$plotting_names,
~ggseg(.data = ggsegDesterieux_resp,
atlas = 'desterieux',
mapping = aes_string(fill = .x[[1]]),
colour="black"
) +
theme_void() +
scale_fill_gradient2(
limits = c(min(c(ggsegDesterieux_resp[[.x]],ggsegAseg_resp[[.x]]), na.rm = TRUE),
max(c(ggsegDesterieux_resp[[.x]],ggsegAseg_resp[[.x]]), na.rm = TRUE)),
midpoint = 0, low = "blue", mid = "white",
high = "red", space = "Lab", na.value="transparent" ) +
theme(legend.position = "none") +
labs(title =.y)
)
estimateAseg_resp <-
algorithm_vec$vec_names %>%
purrr::map(., ~ggseg(.data = ggsegAseg_resp,
atlas = 'aseg',
mapping = aes_string(fill = .x[[1]]),
view = "axial",
colour="black"
) +
theme_void() +
scale_fill_gradient2(
limits = c(min(c(ggsegDesterieux_resp[[.x]],ggsegAseg_resp[[.x]]), na.rm = TRUE),
max(c(ggsegDesterieux_resp[[.x]],ggsegAseg_resp[[.x]]), na.rm = TRUE)),
midpoint = 0, low = "blue", mid = "white",
high = "red", space = "Lab", na.value="transparent" ) +
guides(fill = guide_colourbar(barwidth = 0.5, barheight = 3, title = NULL))
)
return(list(estimateCort_resp=estimateCort_resp,
estimateAseg_resp = estimateAseg_resp))
}
plot_vec <- seq(1,11,by = 1)
###Nback all rois
nback_brain_plot <- brainPrepTibFunc(vi_input = vi_enetxplorer,
resp_input = resp_names[1])
plot_vec %>% map(.,~gridExtra::grid.arrange(nback_brain_plot[["estimateCort_resp"]][[.]],
nback_brain_plot[["estimateAseg_resp"]][[.]],
nrow = 1, ncol = 2, widths = c(4, 1.5)))
## [[1]]
## TableGrob (1 x 2) "arrange": 2 grobs
## z cells name grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
##
## [[2]]
## TableGrob (1 x 2) "arrange": 2 grobs
## z cells name grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
##
## [[3]]
## TableGrob (1 x 2) "arrange": 2 grobs
## z cells name grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
##
## [[4]]
## TableGrob (1 x 2) "arrange": 2 grobs
## z cells name grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
##
## [[5]]
## TableGrob (1 x 2) "arrange": 2 grobs
## z cells name grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
##
## [[6]]
## TableGrob (1 x 2) "arrange": 2 grobs
## z cells name grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
##
## [[7]]
## TableGrob (1 x 2) "arrange": 2 grobs
## z cells name grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
##
## [[8]]
## TableGrob (1 x 2) "arrange": 2 grobs
## z cells name grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
##
## [[9]]
## TableGrob (1 x 2) "arrange": 2 grobs
## z cells name grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
##
## [[10]]
## TableGrob (1 x 2) "arrange": 2 grobs
## z cells name grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
##
## [[11]]
## TableGrob (1 x 2) "arrange": 2 grobs
## z cells name grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
estimateCort_nback_all <- ggpubr::ggarrange(plotlist=nback_brain_plot[["estimateCort_resp"]],nrow=11)
estimateAseg_nback_all <- ggpubr::ggarrange(plotlist=nback_brain_plot[["estimateAseg_resp"]],nrow=11) +
theme(plot.margin=grid::unit(c(0,0,0,0), "mm"))
nback_feature_importance_plot <-
ggpubr::ggarrange(plotlist=list(estimateCort_nback_all, estimateAseg_nback_all),
ncol=2,common.legend = TRUE,legend = "right")
ggpubr::annotate_figure(nback_feature_importance_plot,
top = ggpubr::text_grob("Variable Importance for the N-Back Behavioral Performance",
color = "black", face = "bold", size = 14, hjust = .6))
### gfactor all rois
gfactor_brain_plot <- brainPrepTibFunc(vi_input = vi_enetxplorer,
resp_input = cfa_resp_names[1])
plot_vec %>% map(.,~gridExtra::grid.arrange(gfactor_brain_plot[["estimateCort_resp"]][[.]],
gfactor_brain_plot[["estimateAseg_resp"]][[.]],
nrow = 1, ncol = 2, widths = c(4, 1.5)))
## [[1]]
## TableGrob (1 x 2) "arrange": 2 grobs
## z cells name grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
##
## [[2]]
## TableGrob (1 x 2) "arrange": 2 grobs
## z cells name grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
##
## [[3]]
## TableGrob (1 x 2) "arrange": 2 grobs
## z cells name grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
##
## [[4]]
## TableGrob (1 x 2) "arrange": 2 grobs
## z cells name grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
##
## [[5]]
## TableGrob (1 x 2) "arrange": 2 grobs
## z cells name grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
##
## [[6]]
## TableGrob (1 x 2) "arrange": 2 grobs
## z cells name grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
##
## [[7]]
## TableGrob (1 x 2) "arrange": 2 grobs
## z cells name grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
##
## [[8]]
## TableGrob (1 x 2) "arrange": 2 grobs
## z cells name grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
##
## [[9]]
## TableGrob (1 x 2) "arrange": 2 grobs
## z cells name grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
##
## [[10]]
## TableGrob (1 x 2) "arrange": 2 grobs
## z cells name grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
##
## [[11]]
## TableGrob (1 x 2) "arrange": 2 grobs
## z cells name grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
estimateCort_gfactor_all <- ggpubr::ggarrange(plotlist=gfactor_brain_plot[["estimateCort_resp"]],nrow=11)
estimateAseg_gfactor_all <- ggpubr::ggarrange(plotlist=gfactor_brain_plot[["estimateAseg_resp"]],nrow=11) +
theme(plot.margin=grid::unit(c(0,0,0,0), "mm"))
gfactor_feature_importance_plot <-
ggpubr::ggarrange(plotlist=list(estimateCort_gfactor_all,
estimateAseg_gfactor_all),
ncol=2,
common.legend = TRUE,
legend = "right")
ggpubr::annotate_figure(gfactor_feature_importance_plot,
top = ggpubr::text_grob("Variable Importance for the G-Factor",
color = "black", face = "bold", size = 14, hjust = 1))
brainPlotTib_sri <- other_paper_vi_all_raw %>%
rename(label = rois) %>%
# mutate(.,label = str_replace_all(variable, str_type, '')) %>%
mutate(.,label = str_replace_all(label, '\\.', '-')) %>%
mutate(.,label = str_replace_all(label, 'Brain-Stem', 'brain-stem')) %>%
mutate(.,label = str_replace_all(label, 'Right-Cerebellum-Cortex', 'right-cerebellum-cortex')) %>%
mutate(.,label = str_replace_all(label, 'roi_', ''))
ggsegDesterieux_resp_sri <- ggsegDesterieux::desterieux %>% as_tibble %>%
select(label) %>%
na.omit() %>%
left_join(brainPlotTib_sri, by = "label")
ggsegAseg_resp_sri <- ggseg::aseg$data %>% as_tibble %>%
select(label) %>%
na.omit() %>%
left_join(brainPlotTib_sri, by = "label")
ggseg(.data = ggsegDesterieux_resp_sri,
atlas = 'desterieux',
mapping = aes_string(fill = "other_paper"),
colour="black"
) +
theme_void() +
scale_fill_gradient2(
limits = c(min(c(ggsegDesterieux_resp_sri[["other_paper"]],ggsegAseg_resp_sri[["other_paper"]]), na.rm = TRUE),
max(c(ggsegDesterieux_resp_sri[["other_paper"]],ggsegAseg_resp_sri[["other_paper"]]), na.rm = TRUE)),
midpoint = 0, low = "blue", mid = "white",
high = "red", space = "Lab", na.value="transparent" ) +
theme(legend.position = "none") +
labs(title ="Sripada\n2019")
ggseg(.data = ggsegAseg_resp_sri,
atlas = 'aseg',
mapping = aes_string(fill = "other_paper"),
view = "axial",
colour="black"
) +
theme_void() +
scale_fill_gradient2(
limits = c(min(c(ggsegAseg_resp_sri[["other_paper"]],ggsegAseg_resp_sri[["other_paper"]]), na.rm = TRUE),
max(c(ggsegAseg_resp_sri[["other_paper"]],ggsegAseg_resp_sri[["other_paper"]]), na.rm = TRUE)),
midpoint = 0, low = "blue", mid = "white",
high = "red", space = "Lab", na.value="transparent" ) +
guides(fill = guide_colourbar(barwidth = 0.5, barheight = 3, title = NULL))
brainPlot_names_eNetXplorer_other <- tibble(vec_names = append("other_paper",colnames(vi_enetxplorer$TFMRI_NB_ALL_BEH_C2B_RATE[2:length(vi_enetxplorer$TFMRI_NB_ALL_BEH_C2B_RATE)])),
plotting_names = c("Sripada 2019","Mass-Univariate FDR-Corrected",
"Mass-Univariate Bonferroni-Corrected",
"OLS",
"OLS with p<.05",
"Elastic Net",
"eNetXplorer with p<.05",
"Linear SVM",
"Polynomial SVM",
"RBF SVM",
"Random Forest",
"XGBoost"))
vi_enetxplorer_other <- vi_enetxplorer
other_paper_raw <- other_paper_vi_all_raw %>% select("rois","other_paper")
vi_enetxplorer_other_all <- full_join(vi_enetxplorer_other$gfactor, other_paper_raw, by = "rois")
vi_enetxplorer_other$gfactor <- vi_enetxplorer_other_all
gfactor_brain_plot_other <- brainPrepTibFunc(vi_input = vi_enetxplorer_other,
resp_input = cfa_resp_names[1],
algorithm_vec = brainPlot_names_eNetXplorer_other)
seq(1,12,1) %>% map(.,~gridExtra::grid.arrange(gfactor_brain_plot_other[["estimateCort_resp"]][[.]],
gfactor_brain_plot_other[["estimateAseg_resp"]][[.]],
nrow = 1, ncol = 2, widths = c(4, 1.5)))
## [[1]]
## TableGrob (1 x 2) "arrange": 2 grobs
## z cells name grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
##
## [[2]]
## TableGrob (1 x 2) "arrange": 2 grobs
## z cells name grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
##
## [[3]]
## TableGrob (1 x 2) "arrange": 2 grobs
## z cells name grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
##
## [[4]]
## TableGrob (1 x 2) "arrange": 2 grobs
## z cells name grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
##
## [[5]]
## TableGrob (1 x 2) "arrange": 2 grobs
## z cells name grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
##
## [[6]]
## TableGrob (1 x 2) "arrange": 2 grobs
## z cells name grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
##
## [[7]]
## TableGrob (1 x 2) "arrange": 2 grobs
## z cells name grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
##
## [[8]]
## TableGrob (1 x 2) "arrange": 2 grobs
## z cells name grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
##
## [[9]]
## TableGrob (1 x 2) "arrange": 2 grobs
## z cells name grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
##
## [[10]]
## TableGrob (1 x 2) "arrange": 2 grobs
## z cells name grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
##
## [[11]]
## TableGrob (1 x 2) "arrange": 2 grobs
## z cells name grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
##
## [[12]]
## TableGrob (1 x 2) "arrange": 2 grobs
## z cells name grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
estimateCort_gfactor_all_other <- ggpubr::ggarrange(plotlist=gfactor_brain_plot_other[["estimateCort_resp"]],nrow=12)
estimateAseg_gfactor_all_other <- ggpubr::ggarrange(plotlist=gfactor_brain_plot_other[["estimateAseg_resp"]],nrow=12) +
theme(plot.margin=grid::unit(c(0,0,0,0), "mm"))
gfactor_feature_importance_plot_other <-
ggpubr::ggarrange(plotlist=list(estimateCort_gfactor_all_other,
estimateAseg_gfactor_all_other),
ncol=2,
common.legend = TRUE,
legend = "right")
ggpubr::annotate_figure(gfactor_feature_importance_plot_other,
top = ggpubr::text_grob("Variable Importance for the G-Factor",
color = "black", face = "bold", size = 14, hjust = 1))
To understand the pattern of the prediction, we calculate ALE from each algorithm
https://www.brodrigues.co/blog/2020-03-10-exp_tidymodels/ https://cran.r-project.org/web/packages/iml/vignettes/intro.html https://cran.r-project.org/web/packages/iml/vignettes/parallel.html
Instead of creating one list for all the algorithms of OLS, enet, svm linear, svm ploy, svm rbf, random forest and xgboost. OLS and xgboost are treated differently. The reason for this is that the predictive wrapper of those two algorithms are different. Especially, in xgboost, the prediction function requires the input of response variable. Hence there are two different prediction wrapper for xgboost.
library(iml)
##list of Nback all algorithms all model fit
OLS_Nback <- OLS_fit[[1]]
Nback_all_algorithms <- list(enet= enet_final_fit_list[[1]],
svm_linear = svm_linear_final_fit_list[[1]],
random_forest=random_forest_final_fit_list[[1]],
svm_RBF = SVM_RBF_final_fit_list[[1]],
svm_ploy = svm_poly_final_fit_list[[1]])
xgboost_Nback <- xgboost_final_fit_list[[1]]
OLS_gfactor <- OLS_fit_gfactor[[1]]
gfactor_all_algorithms <- list(enet= enet_final_fit_list_gfactor[[1]],
svm_linear = svm_linear_final_fit_list_gfactor[[1]],
random_forest=random_forest_final_fit_list_gfactor[[1]],
svm_RBF = SVM_RBF_final_fit_list_gfactor[[1]],
svm_ploy = svm_poly_final_fit_list_gfactor[[1]])
xgboost_gfactor <- xgboost_final_fit_list_gfactor[[1]]
ols_pred_fun <- function(object, newdata) {
return(predict(object, new_data = newdata))
}
xgboost_pred_fun <- function(object, newdata, newresp) {
pred_matrix <- newdata%>%
as.matrix()
pred_label <- newresp%>% as.vector()%>%t()
pred_DMtrix <- xgboost::xgb.DMatrix(data = pred_matrix,label=pred_label)
return(predict(object,pred_DMtrix))
}
recipe_Nback <- recipe_list[[resp_names[1]]]
recipe_vi_gfactor <- recipe_gfactor[[cfa_resp_names[1]]]
features_Nback <- recipe_Nback %>%
bake(new_data=NULL) %>%
select(-resp_names[1]) %>%
as.data.frame()
target_Nback <- recipe_Nback %>%
bake(new_data=NULL) %>%
select(resp_names[1]) %>%
as.data.frame()
predictor_Nback_all <-Nback_all_algorithms %>% map(.,~Predictor$new(
model = .,
data = features_Nback,
y = target_Nback,
predict.fun = model_pred_fun)
)
predictor_Nback_ols <- Predictor$new(
model = OLS_Nback,
data = features_Nback,
y = target_Nback)
##this following predict wrapper does not have response but also works
xgboost_pred_wrapper <- function(object, newdata) {
pred_matrix <- newdata%>%
as.matrix()
return(predict(object,pred_matrix))
}
predictor_Nback_xgboost <- Predictor$new(
model = xgboost_Nback,
data = features_Nback,
y = target_Nback,
predict.fun = xgboost_pred_wrapper)
features_gfactor <- recipe_vi_gfactor %>%
bake(new_data=NULL) %>%
select(-cfa_resp_names[1]) %>%
as.data.frame()
target_gfactor <- recipe_vi_gfactor %>%
bake(new_data=NULL) %>%
select(cfa_resp_names[1]) %>%
as.data.frame()
predictor_gfactor_all <- gfactor_all_algorithms %>% map(.,~Predictor$new(
model = .,
data = features_gfactor,
y = target_gfactor,
predict.fun = model_pred_fun)
)
predictor_gfactor_ols <- Predictor$new(
model = OLS_gfactor,
data = features_gfactor,
y = target_gfactor)
predictor_gfactor_xgboost <- Predictor$new(
model = xgboost_gfactor,
data = features_gfactor,
y = target_gfactor,
predict.fun = xgboost_pred_wrapper)
Nback_roi_vec <- vi_all_rename_TFMRI_NB_ALL_BEH_C2B_RATE_rank %>%
arrange(desc(TFMRI_NB_ALL_BEH_C2B_RATE_rank)) %>%
filter(TFMRI_NB_ALL_BEH_C2B_RATE_rank > 137)%>%
select("rois")%>%
as_vector()
gfactor_rank <- vi_all_gfactor$gfactor %>% select(-rois) %>% data.table::frankv(ties.method = "min")
vi_all_gfactor_rank <- cbind(vi_all_gfactor$gfactor, gfactor_rank)
gfactor_roi_vec <- vi_all_gfactor_rank %>%
arrange(desc(gfactor_rank)) %>%
filter(gfactor_rank > 137) %>%
select("rois")%>%
as_vector()
# # compare the ranks between n-back and g-factor
#
# vi_all_rename_TFMRI_NB_ALL_BEH_C2B_RATE_rank %>%
# select(rois, TFMRI_NB_ALL_BEH_C2B_RATE_rank) %>%
# left_join(vi_all_gfactor_rank %>%
# select(rois, gfactor_rank), by = "rois") %>% arrange(desc(TFMRI_NB_ALL_BEH_C2B_RATE_rank,gfactor_rank))
algorithm_iml_vec <- names(Nback_all_algorithms)
alePlot_names <- tibble(vec_names =algorithm_iml_vec,
plotting_names = c("Elastic Net",
"Linear SVM",
"Random Forest",
"RBF SVM",
"Polynomial SVM"))
rois_ale_processing <- function(roi_input,
ols_predictor_input,
algorithms_predictor_input,
xgboost_predictor_input){
library(doFuture)
registerDoFuture()
plan(multisession(workers = 15))
ale_OLS <- FeatureEffect$new(ols_predictor_input,
feature = roi_input,
grid.size = 20)
ale_OLS_results <- ale_OLS$results%>%
mutate(algorithm = "OLS")
ale_algorithms <- algorithm_iml_vec %>%
map(.,function(algorithm_input=.){
ale_one_algor <- FeatureEffect$new(algorithms_predictor_input[[algorithm_input]],
feature = roi_input,
grid.size = 20)
ale_one_algor_results <- ale_one_algor$results%>%
mutate(algorithm =alePlot_names$plotting_names
[which(alePlot_names$vec_names==algorithm_input)] )
return(ale_one_algor_results)
})%>% do.call(rbind,.)
ale_xgboost <- FeatureEffect$new(xgboost_predictor_input,
feature = roi_input,
grid.size = 20)
ale_xgboost_results <- ale_xgboost$results%>%
mutate(algorithm = "XGBoost")
ale_all <- bind_rows(ale_OLS_results,ale_algorithms,ale_xgboost_results)%>%
mutate(algorithm = factor(algorithm,levels =c ("OLS","Elastic Net",
"Random Forest","XGBoost", "Linear SVM",
"Polynomial SVM" ,"RBF SVM")))
return(ale_all)
}
ale_Nback_all <- Nback_roi_vec %>%
map(.,~rois_ale_processing(roi_input = .,
ols_predictor_input = predictor_Nback_ols,
algorithms_predictor_input = predictor_Nback_all,
xgboost_predictor_input =predictor_Nback_xgboost ))
names(ale_Nback_all) <- Nback_roi_vec
saveRDS(ale_Nback_all, paste0(anotherFold,
'working_memory_tasks/windows/ale_Nback_all_Mar_22_2022_rmse', '.RData'))
ale_gfactor_all <- gfactor_roi_vec %>%
map(.,~rois_ale_processing(roi_input = .,
ols_predictor_input = predictor_gfactor_ols,
algorithms_predictor_input = predictor_gfactor_all,
xgboost_predictor_input = predictor_gfactor_xgboost))
names(ale_gfactor_all) <- gfactor_roi_vec
saveRDS(ale_gfactor_all, paste0(anotherFold,
'working_memory_tasks/windows/ale_gfactor_all_Mar_22_2022_rmse', '.RData'))
ale_plotting <- function(data_input, roi_input, feature_input){
ale_plot <- ggplot()+
geom_line(data = data_input, aes(x = .data[[roi_input]],
y = .value,group = algorithm,
color = algorithm,linetype = algorithm),size=2)+
scale_color_brewer(palette = "Dark2")+
geom_rug(data = feature_input,aes(x= .data[[roi_input]]))+
theme(
axis.title.x = element_blank(),
axis.title.y = element_blank(),
legend.position = "none",
axis.text=element_text(size=15))+
ggtitle(new_shorter_names_two_lines$roiShortTwoLines[which(new_shorter_names_two_lines$roi==str_remove(roi_input,"roi_"))])+
theme(plot.title = element_text(size = 20))
return(ale_plot)
}
ale_plot_Nback <- map2(.x =ale_Nback_all,
.y= Nback_roi_vec,
~ale_plotting(data_input = .x,
roi_input = .y,
feature_input = features_Nback))
ale_plot_gfactor <- map2(.x =ale_gfactor_all,
.y= gfactor_roi_vec,
~ale_plotting(data_input = .x,
roi_input = .y,
feature_input = features_gfactor))
ale_plot_example <- ggplot()+
geom_line(data = ale_Nback_all[[1]],
aes(x = .data[[Nback_roi_vec[1]]],
y = .value,group = algorithm,
color = algorithm,linetype = algorithm),size=2)+
scale_color_brewer(palette = "Dark2")+
geom_rug(data = features_Nback,aes(x= .data[[Nback_roi_vec[1]]]))+
theme(
axis.title.x = element_blank(),
axis.title.y = element_blank(),
legend.position = "bottom",
legend.title=element_text(size=25),
legend.text=element_text(size=25))+
ggtitle(
new_shorter_names_two_lines$roiShortTwoLines[which(new_shorter_names_two_lines$roi==str_remove(Nback_roi_vec[3],"roi_"))])+
theme(plot.title = element_text(size = 20)) +
guides(color = guide_legend(override.aes = list(size = 10)))
ale_plot_legend <- get_legend(ale_plot_example)
ale_plot_nback_all <- ggpubr::ggarrange(plotlist =ale_plot_Nback, ncol = 5,nrow = 6,
common.legend = TRUE, legend = "bottom",
legend.grob = ale_plot_legend)
ale_plot_gfactor_all <- ggpubr::ggarrange(plotlist =ale_plot_gfactor, ncol = 5,nrow = 6,
common.legend = TRUE, legend = "bottom",
legend.grob = ale_plot_legend)
title_ale_Nback <- ggdraw() +
draw_label(
"Accumulated Local Effects for 30-Top Brain Regions\nThat Predicted N-Back Behavioral Performance",
fontface = 'bold',
x = 0,
hjust = 0,
size = 30) +
theme(
# add margin on the left of the drawing canvas,
# so title is aligned with left edge of first plot
plot.margin = margin(0, 0, 0, 7)
)
title_ale_gfactor <- ggdraw() +
draw_label(
"Accumulated Local Effects for 30-Top Brain Regions\nThat Predicted the G-Factor",
fontface = 'bold',
x = 0,
hjust = 0,
size = 30
) +
theme(
# add margin on the left of the drawing canvas,
# so title is aligned with left edge of first plot
plot.margin = margin(0, 0, 0, 7)
)
plot_grid(title_ale_Nback,ale_plot_nback_all,nrow = 2 , rel_heights = c(0.1, 1))
plot_grid(title_ale_gfactor,ale_plot_gfactor_all,nrow = 2 , rel_heights = c(0.1, 1))
ols_example <-map(.x = feature_names,~FeatureEffect$new(predictor_Nback_ols,
feature = .,
grid.size = 20))
ols_results <- map(ols_example, "results")%>% do.call(cbind,.)
The mass univariate fit function.
Holdout_results is a function that takes one roi and fit a regression on it. The outputs of this function are model slope estimate and the prediction. Resp_results returns the slope estimate and prediction for all rois.
Median_extrac extracts the median value of the predictions of all rois that is significant.
mass_uni_fit <- function(resp_input,recipe_input,roi_input){
training_data <- bake(prep(recipe_input), new_data = NULL)
formulas <- paste0(resp_input ,' ~ ', roi_input)
results_test_simple <- lm(as.formula(formulas),data=training_data)
model_predict <- predict(results_test_simple, data = training_data)%>%
as.vector()
result_tibble <- tibble(feature_value = training_data[[roi_input]],predict = model_predict)
names(result_tibble) <- c(roi_input, "model_predict")
return(list(mode_fit=results_test_simple, model_result =result_tibble))
}
uni_fit_nback <-map(.x = Nback_roi_vec,
~mass_uni_fit(resp_input = resp_names[1],recipe_input = recipe_list[[1]],roi_input = .x))
uni_fit_gfactor <-map(.x = gfactor_roi_vec,
~mass_uni_fit(resp_input = cfa_resp_names[1],
recipe_input = recipe_gfactor[[1]],roi_input = .x))
features_uni_nback <- map(Nback_roi_vec, function(roi_input = .){
uni_features <- features_Nback%>%
select(roi_input)
return(uni_features)
})
#predictor_nback_uni <- map2(.x = uni_fit_nback,.y = features_uni_nback,
# ~Predictor$new(model = .x,
# data =.y,
# y = target_Nback))
#predictor_nback_uni <- Predictor$new(
# model = xgboost_gfactor,
# data = features_gfactor,
# y = target_gfactor,
# predict.fun = xgboost_pred_wrapper)
uni_nback_results<- map(uni_fit_nback,"model_result")
uni_gfactor_results<- map(uni_fit_gfactor,"model_result")
uni_plotting <- function(data_input, roi_input){
uni_plot <- ggplot()+
geom_line(data = data_input, aes(x = .data[[roi_input]],
y = model_predict),size=2)+
scale_color_brewer(palette = "Dark2")+
geom_rug(data = data_input,aes(x= .data[[roi_input]]))+
theme(
axis.title.x = element_blank(),
axis.title.y = element_blank(),
legend.position = "none",
axis.text=element_text(size=15))+
ggtitle(new_shorter_names_two_lines$roiShortTwoLines[which(new_shorter_names_two_lines$roi==str_remove(roi_input,"roi_"))])+
theme(plot.title = element_text(size = 20))
return(uni_plot)
}
uni_plot_Nback <- map2(.x =uni_nback_results,
.y= Nback_roi_vec,
~uni_plotting(data_input = .x,
roi_input = .y))
uni_plot_gfactor <- map2(.x =uni_gfactor_results,
.y= gfactor_roi_vec,
~uni_plotting(data_input = .x,
roi_input = .y))
uni_plot_nback_all <- ggpubr::ggarrange(plotlist =uni_plot_Nback, ncol = 5,nrow = 6)
uni_plot_gfactor_all <- ggpubr::ggarrange(plotlist =uni_plot_gfactor, ncol = 5,nrow = 6)
title_uni_Nback <- ggdraw() +
draw_label(
"Univariate Effects for 30-Top Brain Regions\nThat Predicted N-Back Behavioral Performance",
fontface = 'bold',
x = 0,
hjust = 0,
size = 30) +
theme(
# add margin on the left of the drawing canvas,
# so title is aligned with left edge of first plot
plot.margin = margin(0, 0, 0, 7)
)
title_uni_gfactor <- ggdraw() +
draw_label(
"Univariate Effects for 30-Top Brain Regions\nThat Predicted the G-Factor",
fontface = 'bold',
x = 0,
hjust = 0,
size = 30
) +
theme(
# add margin on the left of the drawing canvas,
# so title is aligned with left edge of first plot
plot.margin = margin(0, 0, 0, 7)
)
plot_grid(title_uni_Nback,uni_plot_nback_all,nrow = 2 , rel_heights = c(0.1, 1))
plot_grid(title_uni_gfactor,uni_plot_gfactor_all,nrow = 2 , rel_heights = c(0.1, 1))
## predicted value of univariate and ale value for others
effect_plot_data_processing <- function(uni_input, ale_input){
nrow_uni <- nrow(uni_input)
uni_input <- uni_input %>%
rename(.value = model_predict)%>%
mutate(algorithm ="Univariate")
ale_frame <- select(ale_input,-.type)
all_frame <- bind_rows(uni_input,ale_frame)%>%
mutate(algorithm = factor(algorithm,levels =c ("Univariate","OLS","Elastic Net",
"Random Forest","XGBoost", "Linear SVM",
"Polynomial SVM" ,"RBF SVM")))
return(all_frame)
}
ale_uni_nback <-map2(.x = uni_nback_results,.y=ale_Nback_all,
~effect_plot_data_processing(uni_input =.x ,ale_input = .y))
ale_uni_gfactor <-map2(.x = uni_gfactor_results,.y=ale_gfactor_all,
~effect_plot_data_processing(uni_input =.x ,ale_input = .y))
ale_uni_plot_Nback <- map2(.x =ale_uni_nback,
.y= Nback_roi_vec,
~ale_plotting(data_input = .x,
roi_input = .y,
feature_input = features_Nback))
ale_uni_plot_gfactor <- map2(.x =ale_uni_gfactor,
.y= gfactor_roi_vec,
~ale_plotting(data_input = .x,
roi_input = .y,
feature_input = features_gfactor))
ale_uni_plot_example <- ggplot()+
geom_line(data = ale_uni_nback[[1]],
aes(x = .data[[Nback_roi_vec[1]]],
y = .value,group = algorithm,
color = algorithm,linetype = algorithm),size=2)+
scale_color_brewer(palette = "Dark2")+
geom_rug(data = features_Nback,aes(x= .data[[Nback_roi_vec[1]]]))+
theme(
axis.title.x = element_blank(),
axis.title.y = element_blank(),
legend.position = "bottom",
legend.title=element_text(size=25),
legend.text=element_text(size=25))+
ggtitle(
new_shorter_names_two_lines$roiShortTwoLines[which(new_shorter_names_two_lines$roi==str_remove(Nback_roi_vec[3],"roi_"))])+
theme(plot.title = element_text(size = 20)) +
guides(color = guide_legend(override.aes = list(size = 10)))
ale_uni_plot_legend <- get_legend(ale_uni_plot_example)
ale_uni_plot_nback_all <- ggpubr::ggarrange(plotlist =ale_uni_plot_Nback, ncol = 5,nrow = 6,
common.legend = TRUE, legend = "bottom",
legend.grob = ale_uni_plot_legend)
ale_uni_plot_gfactor_all <- ggpubr::ggarrange(plotlist =ale_uni_plot_gfactor, ncol = 5,nrow = 6,
common.legend = TRUE, legend = "bottom",
legend.grob = ale_uni_plot_legend)
title_ale_uni_Nback <- ggdraw() +
draw_label(
"Accumulated Local and Univariate Effects for 30-Top Brain Regions\nThat Predicted N-Back Behavioral Performance",
fontface = 'bold',
x = 0,
hjust = 0,
size = 30) +
theme(
# add margin on the left of the drawing canvas,
# so title is aligned with left edge of first plot
plot.margin = margin(0, 0, 0, 7)
)
title_ale_uni_gfactor <- ggdraw() +
draw_label(
"Accumulated Local and Univariate Effects for 30-Top Brain Regions\nThat Predicted the G-Factor",
fontface = 'bold',
x = 0,
hjust = 0,
size = 30
) +
theme(
# add margin on the left of the drawing canvas,
# so title is aligned with left edge of first plot
plot.margin = margin(0, 0, 0, 7)
)
plot_grid(title_ale_uni_Nback,ale_uni_plot_nback_all,nrow = 2 , rel_heights = c(0.1, 1))
plot_grid(title_ale_uni_gfactor,ale_uni_plot_gfactor_all,nrow = 2 , rel_heights = c(0.1, 1))
enet_nback_roi_vec <- coefs_enet_all[[1]] %>%
filter(type == "Target models") %>%
arrange(desc(abs(wmean))) %>% .$variable
enet_gfactor_roi_vec <- coefs_enet_gfactor[[1]] %>%
filter(type == "Target models") %>%
arrange(desc(abs(wmean))) %>% .$variable
enet_ale_Nback_all <- enet_nback_roi_vec %>%
map(.,
~rois_ale_processing(roi_input = .,
ols_predictor_input = predictor_Nback_ols,
algorithms_predictor_input = predictor_Nback_all,
xgboost_predictor_input =predictor_Nback_xgboost ))
saveRDS(enet_ale_Nback_all,
paste0(anotherFold,
'working_memory_tasks/windows/enet_ale_Nback_all_Mar_22_2022_rmse', '.RData'))
enet_ale_gfactor_all <-
enet_gfactor_roi_vec %>%
map(.,~rois_ale_processing(roi_input = .,
ols_predictor_input = predictor_gfactor_ols,
algorithms_predictor_input = predictor_gfactor_all,
xgboost_predictor_input = predictor_gfactor_xgboost))
saveRDS(enet_ale_gfactor_all, paste0(anotherFold,
'working_memory_tasks/windows/enet_ale_gfactor_all_Mar_22_2022_rmse', '.RData'))
uni_enet_nback <-map(.x = enet_nback_roi_vec,
~mass_uni_fit(resp_input = resp_names[1],recipe_input = recipe_list[[1]],roi_input = .x))
uni_enet_gfactor <-map(.x = enet_gfactor_roi_vec,
~mass_uni_fit(resp_input = cfa_resp_names[1],
recipe_input = recipe_gfactor[[1]],roi_input = .x))
uni_nback_enet_results<- map(uni_enet_nback,"model_result")
uni_gfactor_enet_results<- map(uni_enet_gfactor,"model_result")
uni_plot_Nback_enet <- map2(.x =uni_nback_enet_results,
.y= enet_nback_roi_vec,
~uni_plotting(data_input = .x,
roi_input = .y))
uni_plot_gfactor_enet <- map2(.x =uni_gfactor_enet_results,
.y= enet_gfactor_roi_vec,
~uni_plotting(data_input = .x,
roi_input = .y))
uni_plot_nback_enet_all <- ggpubr::ggarrange(plotlist =uni_plot_Nback_enet, ncol = 5,nrow = 6)
uni_plot_gfactor_enet_all <- ggpubr::ggarrange(plotlist =uni_plot_gfactor_enet, ncol = 5,nrow = 6)
title_uni_Nback_enet <- ggdraw() +
draw_label(
"Univaritate Effects of Brain Regions that Predicted\nN-Back Behavioral Performance With eNetXplorer's p < .05",
fontface = 'bold',
x = 0,
hjust = 0,
size = 30) +
theme(
# add margin on the left of the drawing canvas,
# so title is aligned with left edge of first plot
plot.margin = margin(0, 0, 0, 7)
)
title_uni_gfactor_enet <- ggdraw() +
draw_label(
"Univaritate Effects of Brain Regions That\nPredicted the G-Factor With eNetXplorer's p < .05",
fontface = 'bold',
x = 0,
hjust = 0,
size = 30
) +
theme(
# add margin on the left of the drawing canvas,
# so title is aligned with left edge of first plot
plot.margin = margin(0, 0, 0, 7)
)
plot_grid(title_uni_Nback_enet,uni_plot_nback_enet_all,nrow = 2 , rel_heights = c(0.1, 1))
plot_grid(title_uni_gfactor_enet,uni_plot_gfactor_enet_all,nrow = 2 , rel_heights = c(0.1, 1))
ale_plot_Nback_enet <- map2(.x =enet_ale_Nback_all,
.y= enet_nback_roi_vec,
~ale_plotting(data_input = .x,
roi_input = .y,
feature_input = features_Nback))
ale_plot_gfactor_enet <- map2(.x =enet_ale_gfactor_all,
.y= enet_gfactor_roi_vec,
~ale_plotting(data_input = .x,
roi_input = .y,
feature_input = features_gfactor))
ale_plot_nback_all_enet <- ggpubr::ggarrange(plotlist =ale_plot_Nback_enet,
ncol = 5,
nrow = 6,
common.legend = TRUE,
legend = "bottom",
legend.grob = ale_plot_legend)
ale_plot_gfactor_all_enet <- ggpubr::ggarrange(plotlist =ale_plot_gfactor_enet,
ncol = 5,
nrow = 6,
common.legend = TRUE,
legend = "bottom",
legend.grob = ale_plot_legend)
title_ale_Nback_enet <- ggdraw() +
draw_label(
"Accumulated Local Effects of Brain Regions that Predicted\nN-Back Behavioral Performance With eNetXplorer's p < .05",
fontface = 'bold',
x = 0,
hjust = 0,
size = 30) +
theme(
# add margin on the left of the drawing canvas,
# so title is aligned with left edge of first plot
plot.margin = margin(0, 0, 0, 7)
)
title_ale_gfactor_enet <- ggdraw() +
draw_label(
"Accumulated Local Effects of Brain Regions That\nPredicted the G-Factor With eNetXplorer's p < .05",
fontface = 'bold',
x = 0,
hjust = 0,
size = 30
) +
theme(
# add margin on the left of the drawing canvas,
# so title is aligned with left edge of first plot
plot.margin = margin(0, 0, 0, 7)
)
plot_grid(title_ale_Nback_enet,ale_plot_nback_all_enet,nrow = 2 , rel_heights = c(0.1, 1))
plot_grid(title_ale_gfactor_enet,ale_plot_gfactor_all_enet,nrow = 2 , rel_heights = c(0.1, 1))
Plot top 20 areas by the highest interaction value for algorithms that have iterations: xgboost polynomial SVM, RBF SVM, and random forest.
##list of Nback all algorithms all model fit
Nback_all_interact <- list(svm_linear = svm_linear_final_fit_list[[1]],
random_forest=random_forest_final_fit_list[[1]],
svm_RBF = SVM_RBF_final_fit_list[[1]],
svm_ploy = svm_poly_final_fit_list[[1]])
gfactor_all_interact <- list(svm_linear = svm_linear_final_fit_list_gfactor[[1]],
random_forest=random_forest_final_fit_list_gfactor[[1]],
svm_RBF = SVM_RBF_final_fit_list_gfactor[[1]],
svm_ploy = svm_poly_final_fit_list_gfactor[[1]])
predictor_Nback_interact <-Nback_all_interact %>% map(.,~Predictor$new(
model = .,
data = features_Nback,
y = target_Nback,
predict.fun = model_pred_fun))
predictor_gfactor_interact <- gfactor_all_interact %>% map(.,~Predictor$new(
model = .,
data = features_gfactor,
y = target_gfactor,
predict.fun = model_pred_fun))
algorithm_interact_vec <- names(Nback_all_interact)
interaction_names <- tibble(vec_names =algorithm_interact_vec,
plotting_names = c("Linear SVM", "Random Forest", "RBF SVM","Polynomial SVM"))
library("future")
library("future.callr")
#plan("callr", workers = 6)
plan(multisession(workers = 30))
interact_Nback <- predictor_Nback_interact %>% map(.,~Interaction$new(.))
saveRDS(interact_Nback, paste0(anotherFold,
'working_memory_tasks/windows/interact_Nback_Mar_22_2022', '.RData'))
interact_Nback_xgboost <- Interaction$new(predictor_Nback_xgboost)
saveRDS(interact_Nback_xgboost, paste0(anotherFold,
'working_memory_tasks/windows/interact_Nback_xgboost_Mar_22_2022', '.RData'))
interact_gfactor <- predictor_gfactor_interact %>% map(.,~Interaction$new(.))
saveRDS(interact_gfactor, paste0(anotherFold,
'working_memory_tasks/windows/interact_gfactor_Mar_22_2022', '.RData'))
interact_gfactor_xgboost <- Interaction$new(predictor_gfactor_xgboost)
saveRDS(interact_gfactor_xgboost, paste0(anotherFold,
'working_memory_tasks/windows/interact_gfactor_xgboost_Mar_22_2022', '.RData'))
interact_nback_all <- list("random_forest"= interact_Nback[["random_forest"]],
"xgboost" = interact_Nback_xgboost,
"svm_ploy" = interact_Nback[["svm_ploy"]],
"svm_RBF" =interact_Nback[["svm_RBF"]] )
interact_gfactor_all <- list("random_forest"= interact_gfactor[["random_forest"]],
"xgboost" = interact_gfactor_xgboost,
"svm_ploy" = interact_gfactor[["svm_ploy"]],
"svm_RBF" =interact_gfactor[["svm_RBF"]])
interactPlot_names <- tibble(vec_names =names(interact_nback_all),
plotting_names = c("Random\nForest",
"XGBoost\n",
"Polynomial\nSVM",
"RBF\nSVM"))
interact_nback_results_all <- map(interact_nback_all,"results")
interact_gfactor_results_all <- map(interact_gfactor_all,"results")
interact_Nback_rank <- interact_nback_results_all%>% map(.,~select(.,.interaction)%>%
data.table::frankv(ties.method = "min"))
interact_gfactor_rank <- interact_gfactor_results_all%>% map(.,~select(.,.interaction)%>%
data.table::frankv(ties.method = "min"))
interact_Nback_select <- map2(.x =interact_Nback_rank,.y = interact_nback_results_all,
~cbind(.x,.y)%>%
filter(.x > 147)%>%
rename(interaction_rank= .x)%>%
mutate(roi = str_remove(.feature,"roi_"))%>%
arrange(desc(.interaction)))
interact_Nback_select <- interact_Nback_select %>% map(.,~left_join(.,new_shorter_names, by = "roi"))
interact_gfactor_select <- map2(.x =interact_gfactor_rank,.y = interact_gfactor_results_all,
~cbind(.x,.y)%>%
filter(.x > 147)%>%
rename(interaction_rank= .x)%>%
mutate(roi = str_remove(.feature,"roi_"))%>%
arrange(desc(.interaction)))
interact_gfactor_select <- interact_gfactor_select %>% map(.,~left_join(., new_shorter_names, by = "roi"))
interact_algor_vec <- names(interact_gfactor_select)
interact_plot_fun <- function(interact_input, algorithm_input){
interact_plot <-interact_input[[algorithm_input]]%>%
ggplot( aes(x = .interaction,
y =fct_reorder(roiShort, .interaction, .desc = FALSE) ))+
geom_point()+
geom_segment(aes(x =.interaction, xend = 0, y = roiShort, yend = roiShort))+
theme(axis.title.x=element_blank(),
axis.title.y=element_blank(),
axis.text.x = element_text(angle = 90),
axis.text.y = element_text(size = 12))+
ggtitle(interactPlot_names$plotting_names[which(interactPlot_names$vec_names==algorithm_input)])
return(interact_plot)
}
interact_Nback_plot_list <-
interact_algor_vec %>% map(.,
~interact_plot_fun(interact_input=interact_Nback_select,
algorithm_input=.))
interact_Nback_plot_grid <- plot_grid(plotlist = interact_Nback_plot_list,
nrow = 2,
ncol = 2)
title_interact_Nback <- ggdraw() +
draw_label(
"Interaction plot for the top-20 regions that\npredicted N-Back Behavioral Performance with highest H-statistic",
fontface = 'bold',
x = 0,
hjust = 0
) +
theme(
# add margin on the left of the drawing canvas,
# so title is aligned with left edge of first plot
plot.margin = margin(0, 0, 0, 7)
)
plot_grid(title_interact_Nback,
interact_Nback_plot_grid,
nrow = 2,
rel_heights = c(0.1, 1))
interact_gfactor_plot_list <- interact_algor_vec %>% map(.,~interact_plot_fun(interact_input=interact_gfactor_select,
algorithm_input=.))
interact_gfactor_plot_grid <-plot_grid(plotlist = interact_gfactor_plot_list,nrow = 2,ncol = 2)
title_interact_gfactor <- ggdraw() +
draw_label(
"Interaction plot for the top-20 regions that\npredicted the G-Factor with highest H-statistic",
fontface = 'bold',
x = 0,
hjust = 0
) +
theme(
# add margin on the left of the drawing canvas,
# so title is aligned with left edge of first plot
plot.margin = margin(0, 0, 0, 7)
)
plot_grid(title_interact_gfactor,interact_gfactor_plot_grid,nrow = 2 , rel_heights = c(0.1, 1))
library(olsrr)
vifs_ols_all <- resp_names %>%furrr::future_map(.,~ols_vif_tol(OLS_fit[[.]]),
.options = furrr::furrr_options(seed = 123456))
vifs_ols_all <- vifs_ols_all %>% map(.,~mutate(., term=Variables))
vifs_ols_all[[resp_names[1]]] %>% ggplot(aes(x = VIF)) +
geom_histogram(fill = 'grey80', binwidth = .5) +
scale_x_continuous(breaks = seq(0, 13, by = 3)) +
labs(x = "Explanatory Variables (Regions)",
y = 'Count', title="Variable Inflation Factor of\nExplanatory Variables")+
theme_light() +
theme(text = element_text(size = 30))
summary(vifs_ols_all[[1]]$VIF)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.570 2.584 4.155 4.589 5.956 12.072
sum(vifs_ols_all[[1]]$VIF > 5)
## [1] 67
sum(vifs_ols_all[[1]]$VIF > 10)
## [1] 2
formula_gfactor <- cfa_resp_names %>%
map(.,~as.formula(paste(.,paste(feature_names,collapse = "+"),sep="~")))
OLS_fit_gfactor <- map2(.x=formula_gfactor,
.y=recipe_gfactor ,
~lm(.x,data = .y %>%
bake(new_data= NULL)))
ols_vif_tol(OLS_fit_gfactor[[1]])
## Variables Tolerance VIF
## 1 roi_Left.Cerebellum.Cortex 0.23825422 4.197197
## 2 roi_Left.Thalamus.Proper 0.14667920 6.817599
## 3 roi_Left.Caudate 0.10494616 9.528696
## 4 roi_Left.Putamen 0.10725691 9.323409
## 5 roi_Left.Pallidum 0.40481918 2.470239
## 6 roi_Brain.Stem 0.45259422 2.209485
## 7 roi_Left.Hippocampus 0.23895158 4.184948
## 8 roi_Left.Amygdala 0.40106172 2.493382
## 9 roi_Left.Accumbens.area 0.43857383 2.280118
## 10 roi_Left.VentralDC 0.37245016 2.684923
## 11 roi_Right.Cerebellum.Cortex 0.22632115 4.418500
## 12 roi_Right.Thalamus.Proper 0.13749027 7.273242
## 13 roi_Right.Caudate 0.10954767 9.128446
## 14 roi_Right.Putamen 0.10776559 9.279400
## 15 roi_Right.Pallidum 0.48661866 2.054997
## 16 roi_Right.Hippocampus 0.25948093 3.853848
## 17 roi_Right.Amygdala 0.40115933 2.492775
## 18 roi_Right.Accumbens.area 0.44824548 2.230920
## 19 roi_Right.VentralDC 0.38599869 2.590682
## 20 roi_lh_G_and_S_frontomargin 0.44820567 2.231119
## 21 roi_lh_G_and_S_occipital_inf 0.21523801 4.646020
## 22 roi_lh_G_and_S_paracentral 0.25143311 3.977201
## 23 roi_lh_G_and_S_subcentral 0.18231007 5.485161
## 24 roi_lh_G_and_S_transv_frontopol 0.50189889 1.992433
## 25 roi_lh_G_and_S_cingul.Ant 0.16336452 6.121280
## 26 roi_lh_G_and_S_cingul.Mid.Ant 0.18816958 5.314355
## 27 roi_lh_G_and_S_cingul.Mid.Post 0.19554471 5.113920
## 28 roi_lh_G_cingul.Post.dorsal 0.21505895 4.649888
## 29 roi_lh_G_cingul.Post.ventral 0.33473298 2.987456
## 30 roi_lh_G_cuneus 0.13331004 7.501311
## 31 roi_lh_G_front_inf.Opercular 0.18416522 5.429907
## 32 roi_lh_G_front_inf.Orbital 0.46558469 2.147837
## 33 roi_lh_G_front_inf.Triangul 0.27490293 3.637648
## 34 roi_lh_G_front_middle 0.11038333 9.059339
## 35 roi_lh_G_front_sup 0.08305576 12.040103
## 36 roi_lh_G_Ins_lg_and_S_cent_ins 0.27001821 3.703454
## 37 roi_lh_G_insular_short 0.26482977 3.776010
## 38 roi_lh_G_occipital_middle 0.17980211 5.561670
## 39 roi_lh_G_occipital_sup 0.18430234 5.425867
## 40 roi_lh_G_oc.temp_lat.fusifor 0.24062242 4.155889
## 41 roi_lh_G_oc.temp_med.Lingual 0.11181100 8.943664
## 42 roi_lh_G_oc.temp_med.Parahip 0.54717225 1.827578
## 43 roi_lh_G_orbital 0.39833574 2.510445
## 44 roi_lh_G_pariet_inf.Angular 0.12649414 7.905504
## 45 roi_lh_G_pariet_inf.Supramar 0.14769821 6.770563
## 46 roi_lh_G_parietal_sup 0.13544386 7.383133
## 47 roi_lh_G_postcentral 0.13869056 7.210296
## 48 roi_lh_G_precentral 0.13201709 7.574777
## 49 roi_lh_G_precuneus 0.12294256 8.133880
## 50 roi_lh_G_rectus 0.55705708 1.795148
## 51 roi_lh_G_subcallosal 0.51439140 1.944045
## 52 roi_lh_G_temp_sup.G_T_transv 0.30341470 3.295819
## 53 roi_lh_G_temp_sup.Lateral 0.28700555 3.484253
## 54 roi_lh_G_temp_sup.Plan_polar 0.47566630 2.102314
## 55 roi_lh_G_temp_sup.Plan_tempo 0.28804756 3.471649
## 56 roi_lh_G_temporal_inf 0.53140294 1.881811
## 57 roi_lh_G_temporal_middle 0.40059666 2.496276
## 58 roi_lh_Lat_Fis.ant.Horizont 0.46927533 2.130945
## 59 roi_lh_Lat_Fis.ant.Vertical 0.52808938 1.893619
## 60 roi_lh_Lat_Fis.post 0.18737862 5.336788
## 61 roi_lh_Pole_occipital 0.30952048 3.230804
## 62 roi_lh_Pole_temporal 0.44214482 2.261702
## 63 roi_lh_S_calcarine 0.10392030 9.622759
## 64 roi_lh_S_central 0.11222563 8.910620
## 65 roi_lh_S_cingul.Marginalis 0.23575243 4.241738
## 66 roi_lh_S_circular_insula_ant 0.29475468 3.392652
## 67 roi_lh_S_circular_insula_inf 0.24417494 4.095424
## 68 roi_lh_S_circular_insula_sup 0.18606502 5.374465
## 69 roi_lh_S_collat_transv_ant 0.62215817 1.607308
## 70 roi_lh_S_collat_transv_post 0.32351133 3.091082
## 71 roi_lh_S_front_inf 0.17523685 5.706562
## 72 roi_lh_S_front_middle 0.20403612 4.901093
## 73 roi_lh_S_front_sup 0.13559565 7.374868
## 74 roi_lh_S_interm_prim.Jensen 0.33721867 2.965435
## 75 roi_lh_S_intrapariet_and_P_trans 0.13375748 7.476217
## 76 roi_lh_S_oc_middle_and_Lunatus 0.22392568 4.465767
## 77 roi_lh_S_oc_sup_and_transversal 0.16173686 6.182883
## 78 roi_lh_S_occipital_ant 0.29608092 3.377455
## 79 roi_lh_S_oc.temp_lat 0.32181090 3.107415
## 80 roi_lh_S_oc.temp_med_and_Lingual 0.18485849 5.409543
## 81 roi_lh_S_orbital_lateral 0.40263733 2.483625
## 82 roi_lh_S_orbital_med.olfact 0.57410664 1.741837
## 83 roi_lh_S_orbital.H_Shaped 0.32526671 3.074400
## 84 roi_lh_S_parieto_occipital 0.16971039 5.892391
## 85 roi_lh_S_pericallosal 0.18891848 5.293288
## 86 roi_lh_S_postcentral 0.18928765 5.282965
## 87 roi_lh_S_precentral.inf.part 0.16822941 5.944264
## 88 roi_lh_S_precentral.sup.part 0.24323773 4.111204
## 89 roi_lh_S_suborbital 0.38943279 2.567837
## 90 roi_lh_S_subparietal 0.23459756 4.262619
## 91 roi_lh_S_temporal_inf 0.48159259 2.076444
## 92 roi_lh_S_temporal_sup 0.15428514 6.481505
## 93 roi_lh_S_temporal_transverse 0.37978344 2.633079
## 94 roi_rh_G_and_S_frontomargin 0.48530903 2.060543
## 95 roi_rh_G_and_S_occipital_inf 0.24458314 4.088589
## 96 roi_rh_G_and_S_paracentral 0.24950205 4.007983
## 97 roi_rh_G_and_S_subcentral 0.19870707 5.032534
## 98 roi_rh_G_and_S_transv_frontopol 0.43241073 2.312616
## 99 roi_rh_G_and_S_cingul.Ant 0.18148623 5.510060
## 100 roi_rh_G_and_S_cingul.Mid.Ant 0.18429042 5.426218
## 101 roi_rh_G_and_S_cingul.Mid.Post 0.18712070 5.344144
## 102 roi_rh_G_cingul.Post.dorsal 0.22217564 4.500944
## 103 roi_rh_G_cingul.Post.ventral 0.30178975 3.313565
## 104 roi_rh_G_cuneus 0.15963464 6.264305
## 105 roi_rh_G_front_inf.Opercular 0.19692920 5.077967
## 106 roi_rh_G_front_inf.Orbital 0.43439573 2.302048
## 107 roi_rh_G_front_inf.Triangul 0.26603384 3.758920
## 108 roi_rh_G_front_middle 0.10770719 9.284431
## 109 roi_rh_G_front_sup 0.10329596 9.680921
## 110 roi_rh_G_Ins_lg_and_S_cent_ins 0.28801178 3.472080
## 111 roi_rh_G_insular_short 0.27042153 3.697930
## 112 roi_rh_G_occipital_middle 0.16589992 6.027730
## 113 roi_rh_G_occipital_sup 0.17718555 5.643801
## 114 roi_rh_G_oc.temp_lat.fusifor 0.30079446 3.324529
## 115 roi_rh_G_oc.temp_med.Lingual 0.10764313 9.289957
## 116 roi_rh_G_oc.temp_med.Parahip 0.54975290 1.818999
## 117 roi_rh_G_orbital 0.36343427 2.751529
## 118 roi_rh_G_pariet_inf.Angular 0.12021565 8.318385
## 119 roi_rh_G_pariet_inf.Supramar 0.17172610 5.823227
## 120 roi_rh_G_parietal_sup 0.16524702 6.051546
## 121 roi_rh_G_postcentral 0.13398632 7.463449
## 122 roi_rh_G_precentral 0.14469340 6.911165
## 123 roi_rh_G_precuneus 0.13129277 7.616565
## 124 roi_rh_G_rectus 0.60379441 1.656193
## 125 roi_rh_G_subcallosal 0.56962590 1.755538
## 126 roi_rh_G_temp_sup.G_T_transv 0.31439027 3.180760
## 127 roi_rh_G_temp_sup.Lateral 0.31061482 3.219421
## 128 roi_rh_G_temp_sup.Plan_polar 0.44499697 2.247206
## 129 roi_rh_G_temp_sup.Plan_tempo 0.26488401 3.775237
## 130 roi_rh_G_temporal_inf 0.52417247 1.907769
## 131 roi_rh_G_temporal_middle 0.37070583 2.697557
## 132 roi_rh_Lat_Fis.ant.Horizont 0.42114155 2.374499
## 133 roi_rh_Lat_Fis.ant.Vertical 0.50637833 1.974808
## 134 roi_rh_Lat_Fis.post 0.17494970 5.715929
## 135 roi_rh_Pole_occipital 0.22504482 4.443559
## 136 roi_rh_Pole_temporal 0.45048714 2.219819
## 137 roi_rh_S_calcarine 0.09890480 10.110732
## 138 roi_rh_S_central 0.11513124 8.685740
## 139 roi_rh_S_cingul.Marginalis 0.25205256 3.967426
## 140 roi_rh_S_circular_insula_ant 0.25851274 3.868281
## 141 roi_rh_S_circular_insula_inf 0.27627975 3.619520
## 142 roi_rh_S_circular_insula_sup 0.23133968 4.322648
## 143 roi_rh_S_collat_transv_ant 0.63756379 1.568470
## 144 roi_rh_S_collat_transv_post 0.30434031 3.285795
## 145 roi_rh_S_front_inf 0.18693670 5.349404
## 146 roi_rh_S_front_middle 0.16039624 6.234560
## 147 roi_rh_S_front_sup 0.15167054 6.593238
## 148 roi_rh_S_interm_prim.Jensen 0.29976033 3.335998
## 149 roi_rh_S_intrapariet_and_P_trans 0.14516999 6.888476
## 150 roi_rh_S_oc_middle_and_Lunatus 0.21949110 4.555993
## 151 roi_rh_S_oc_sup_and_transversal 0.15321011 6.526984
## 152 roi_rh_S_occipital_ant 0.32215288 3.104116
## 153 roi_rh_S_oc.temp_lat 0.42770915 2.338037
## 154 roi_rh_S_oc.temp_med_and_Lingual 0.19095425 5.236856
## 155 roi_rh_S_orbital_lateral 0.39409924 2.537432
## 156 roi_rh_S_orbital_med.olfact 0.54011757 1.851449
## 157 roi_rh_S_orbital.H_Shaped 0.31329294 3.191901
## 158 roi_rh_S_parieto_occipital 0.16707639 5.985286
## 159 roi_rh_S_pericallosal 0.16599960 6.024111
## 160 roi_rh_S_postcentral 0.22643296 4.416318
## 161 roi_rh_S_precentral.inf.part 0.18206414 5.492570
## 162 roi_rh_S_precentral.sup.part 0.23768230 4.207297
## 163 roi_rh_S_suborbital 0.53365022 1.873887
## 164 roi_rh_S_subparietal 0.21792846 4.588662
## 165 roi_rh_S_temporal_inf 0.49018959 2.040027
## 166 roi_rh_S_temporal_sup 0.13858170 7.215960
## 167 roi_rh_S_temporal_transverse 0.37403684 2.673533
summary(OLS_fit_gfactor[[1]])
##
## Call:
## lm(formula = .x, data = .y %>% bake(new_data = NULL))
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2367 -0.5815 0.0308 0.5818 2.9546
##
## Coefficients:
## Estimate
## (Intercept) -0.00000000000000002421
## roi_Left.Cerebellum.Cortex 0.00966131461153772568
## roi_Left.Thalamus.Proper 0.01177037636976946411
## roi_Left.Caudate 0.01310503720389756023
## roi_Left.Putamen 0.01130670628551590055
## roi_Left.Pallidum -0.02966998013315826771
## roi_Brain.Stem -0.01376196019045078725
## roi_Left.Hippocampus -0.07905194188584124815
## roi_Left.Amygdala 0.06191620770662376733
## roi_Left.Accumbens.area -0.02313580189328147060
## roi_Left.VentralDC 0.07688199212013521744
## roi_Right.Cerebellum.Cortex 0.03696881267224050999
## roi_Right.Thalamus.Proper -0.04797935767057321527
## roi_Right.Caudate -0.02726760146452630873
## roi_Right.Putamen -0.01155277115289973094
## roi_Right.Pallidum 0.00741235414824566174
## roi_Right.Hippocampus 0.03509660553700912761
## roi_Right.Amygdala -0.01923530037054431777
## roi_Right.Accumbens.area 0.00871939626605779637
## roi_Right.VentralDC 0.02875785269317946216
## roi_lh_G_and_S_frontomargin 0.00860853025681734309
## roi_lh_G_and_S_occipital_inf 0.02099941207341855451
## roi_lh_G_and_S_paracentral 0.00262990998770774777
## roi_lh_G_and_S_subcentral -0.00789403932407936083
## roi_lh_G_and_S_transv_frontopol 0.00443396704536213378
## roi_lh_G_and_S_cingul.Ant 0.03592906260948611902
## roi_lh_G_and_S_cingul.Mid.Ant 0.02665745032436623793
## roi_lh_G_and_S_cingul.Mid.Post -0.05324801965651750069
## roi_lh_G_cingul.Post.dorsal -0.08662740424592965671
## roi_lh_G_cingul.Post.ventral -0.02011551996747178161
## roi_lh_G_cuneus 0.10628505258869698491
## roi_lh_G_front_inf.Opercular 0.04993018454751842194
## roi_lh_G_front_inf.Orbital -0.01204429012693875901
## roi_lh_G_front_inf.Triangul -0.01842964879410049703
## roi_lh_G_front_middle -0.01602400449107488703
## roi_lh_G_front_sup -0.02729030996074978052
## roi_lh_G_Ins_lg_and_S_cent_ins -0.03954633798632166408
## roi_lh_G_insular_short 0.02993054843103441776
## roi_lh_G_occipital_middle 0.02902907427346838876
## roi_lh_G_occipital_sup -0.03900903470473601059
## roi_lh_G_oc.temp_lat.fusifor 0.00797497861140587794
## roi_lh_G_oc.temp_med.Lingual 0.04873348223322794548
## roi_lh_G_oc.temp_med.Parahip 0.03645790597464744487
## roi_lh_G_orbital -0.06256297637069772877
## roi_lh_G_pariet_inf.Angular -0.12217649577683124817
## roi_lh_G_pariet_inf.Supramar -0.02940020833603647701
## roi_lh_G_parietal_sup 0.11742002851151804588
## roi_lh_G_postcentral 0.06509293790453225814
## roi_lh_G_precentral -0.01952613188110465317
## roi_lh_G_precuneus 0.14012374537209376646
## roi_lh_G_rectus 0.04887897608152006607
## roi_lh_G_subcallosal -0.01613790343203189842
## roi_lh_G_temp_sup.G_T_transv 0.00588378235649806864
## roi_lh_G_temp_sup.Lateral 0.00242817698769527994
## roi_lh_G_temp_sup.Plan_polar -0.05199564960949133730
## roi_lh_G_temp_sup.Plan_tempo 0.01666818031105053027
## roi_lh_G_temporal_inf -0.02410532089092182889
## roi_lh_G_temporal_middle -0.01639067862541369533
## roi_lh_Lat_Fis.ant.Horizont 0.01918650584109483220
## roi_lh_Lat_Fis.ant.Vertical 0.02840932703942825738
## roi_lh_Lat_Fis.post -0.05730353927202889996
## roi_lh_Pole_occipital 0.01624711656210765798
## roi_lh_Pole_temporal -0.02443163897884133642
## roi_lh_S_calcarine -0.01902206234926521328
## roi_lh_S_central -0.09101638113030841026
## roi_lh_S_cingul.Marginalis -0.02879237746234408410
## roi_lh_S_circular_insula_ant -0.03677579476979808693
## roi_lh_S_circular_insula_inf -0.02981789904661133472
## roi_lh_S_circular_insula_sup -0.00434522713859756323
## roi_lh_S_collat_transv_ant -0.01347418971245172362
## roi_lh_S_collat_transv_post -0.00991158117058269471
## roi_lh_S_front_inf 0.06914619998293770886
## roi_lh_S_front_middle -0.07254411335641308689
## roi_lh_S_front_sup 0.13269614087199388397
## roi_lh_S_interm_prim.Jensen 0.03314267472660410718
## roi_lh_S_intrapariet_and_P_trans -0.05491321968722431140
## roi_lh_S_oc_middle_and_Lunatus -0.04533841187652120491
## roi_lh_S_oc_sup_and_transversal 0.00063333899289398480
## roi_lh_S_occipital_ant 0.02086294892339740289
## roi_lh_S_oc.temp_lat 0.00582385561957353241
## roi_lh_S_oc.temp_med_and_Lingual 0.03571153506040759124
## roi_lh_S_orbital_lateral 0.01196908867653649448
## roi_lh_S_orbital_med.olfact 0.01699945213129518129
## roi_lh_S_orbital.H_Shaped -0.03082761924350217037
## roi_lh_S_parieto_occipital -0.06675551214385934407
## roi_lh_S_pericallosal -0.01080728969350605410
## roi_lh_S_postcentral -0.03683990266384409851
## roi_lh_S_precentral.inf.part 0.03499746312496239409
## roi_lh_S_precentral.sup.part 0.04984511038997261473
## roi_lh_S_suborbital -0.02147374322110650463
## roi_lh_S_subparietal -0.01323316414123252432
## roi_lh_S_temporal_inf -0.02737684395961494793
## roi_lh_S_temporal_sup 0.03678005598580073171
## roi_lh_S_temporal_transverse 0.00849583223700136649
## roi_rh_G_and_S_frontomargin 0.03888558427046354821
## roi_rh_G_and_S_occipital_inf -0.00341018970374145367
## roi_rh_G_and_S_paracentral -0.03923651960139699912
## roi_rh_G_and_S_subcentral -0.03557507786401344074
## roi_rh_G_and_S_transv_frontopol -0.01745900206027690624
## roi_rh_G_and_S_cingul.Ant 0.03121709317231347036
## roi_rh_G_and_S_cingul.Mid.Ant 0.06616808574255822473
## roi_rh_G_and_S_cingul.Mid.Post 0.04920721929926234750
## roi_rh_G_cingul.Post.dorsal 0.04202723140331964674
## roi_rh_G_cingul.Post.ventral -0.04858959091124330498
## roi_rh_G_cuneus -0.04216042645617019274
## roi_rh_G_front_inf.Opercular 0.03359523469555928538
## roi_rh_G_front_inf.Orbital -0.05440228127682450454
## roi_rh_G_front_inf.Triangul -0.01628211075638175478
## roi_rh_G_front_middle 0.08626456812815107289
## roi_rh_G_front_sup -0.14728955680117258864
## roi_rh_G_Ins_lg_and_S_cent_ins -0.03536374332756012789
## roi_rh_G_insular_short 0.07765645813756125171
## roi_rh_G_occipital_middle -0.05161906678069110022
## roi_rh_G_occipital_sup -0.01965977037744999836
## roi_rh_G_oc.temp_lat.fusifor 0.00657003321815724170
## roi_rh_G_oc.temp_med.Lingual 0.02546870440500232508
## roi_rh_G_oc.temp_med.Parahip 0.01492347049101621324
## roi_rh_G_orbital -0.01607992231394794747
## roi_rh_G_pariet_inf.Angular 0.01636770458321264513
## roi_rh_G_pariet_inf.Supramar -0.12591154726566700095
## roi_rh_G_parietal_sup -0.02358168762892801779
## roi_rh_G_postcentral 0.03658510284323202022
## roi_rh_G_precentral 0.06647980609229742210
## roi_rh_G_precuneus 0.12046767291032406400
## roi_rh_G_rectus 0.01755174899943042280
## roi_rh_G_subcallosal -0.01032257110209917027
## roi_rh_G_temp_sup.G_T_transv 0.04531292836688068093
## roi_rh_G_temp_sup.Lateral 0.02795342691142018929
## roi_rh_G_temp_sup.Plan_polar 0.02001646835029793209
## roi_rh_G_temp_sup.Plan_tempo -0.02140234586545168918
## roi_rh_G_temporal_inf -0.03761595937129045414
## roi_rh_G_temporal_middle 0.00801009248546306375
## roi_rh_Lat_Fis.ant.Horizont -0.01711655825542161141
## roi_rh_Lat_Fis.ant.Vertical -0.01946418931182052753
## roi_rh_Lat_Fis.post 0.02439895565316811676
## roi_rh_Pole_occipital -0.06801050574518398284
## roi_rh_Pole_temporal 0.00064492323602705049
## roi_rh_S_calcarine 0.06803397324601162532
## roi_rh_S_central 0.01796886265261512031
## roi_rh_S_cingul.Marginalis -0.00672875333333778670
## roi_rh_S_circular_insula_ant 0.05069494321776563117
## roi_rh_S_circular_insula_inf 0.00344875972382770093
## roi_rh_S_circular_insula_sup -0.01954525327565757864
## roi_rh_S_collat_transv_ant 0.03631443870302092369
## roi_rh_S_collat_transv_post -0.04359264507861023569
## roi_rh_S_front_inf -0.07429819524793281060
## roi_rh_S_front_middle -0.02809800381626406662
## roi_rh_S_front_sup 0.08209196217295661180
## roi_rh_S_interm_prim.Jensen 0.00146182755096764560
## roi_rh_S_intrapariet_and_P_trans 0.13079866881895360620
## roi_rh_S_oc_middle_and_Lunatus 0.06917123680815549791
## roi_rh_S_oc_sup_and_transversal -0.07287526920181292001
## roi_rh_S_occipital_ant 0.03972410197388721170
## roi_rh_S_oc.temp_lat -0.02675773290045807551
## roi_rh_S_oc.temp_med_and_Lingual -0.05328215486016094765
## roi_rh_S_orbital_lateral -0.04486750760060319310
## roi_rh_S_orbital_med.olfact -0.00562618334459519254
## roi_rh_S_orbital.H_Shaped 0.04768031300827030305
## roi_rh_S_parieto_occipital -0.04197262079918621935
## roi_rh_S_pericallosal -0.00601257301349015800
## roi_rh_S_postcentral -0.04859697191830562868
## roi_rh_S_precentral.inf.part 0.00652610663994512407
## roi_rh_S_precentral.sup.part -0.04098953629240435076
## roi_rh_S_suborbital -0.04140952026458529639
## roi_rh_S_subparietal -0.03287930929565580779
## roi_rh_S_temporal_inf 0.02545105403410785616
## roi_rh_S_temporal_sup -0.01108569468447078918
## roi_rh_S_temporal_transverse 0.00845301362801755170
## Std. Error
## (Intercept) 0.01622812612306296157
## roi_Left.Cerebellum.Cortex 0.03325224553453359072
## roi_Left.Thalamus.Proper 0.04237961590039338033
## roi_Left.Caudate 0.05010233986605008155
## roi_Left.Putamen 0.04955969767727115560
## roi_Left.Pallidum 0.02551001631995352195
## roi_Brain.Stem 0.02412608069663895252
## roi_Left.Hippocampus 0.03320368829276035966
## roi_Left.Amygdala 0.02562923672500416056
## roi_Left.Accumbens.area 0.02450868006472781482
## roi_Left.VentralDC 0.02659544100427128563
## roi_Right.Cerebellum.Cortex 0.03411761850265186691
## roi_Right.Thalamus.Proper 0.04377289781135267760
## roi_Right.Caudate 0.04903878602891673794
## roi_Right.Putamen 0.04944259039956272472
## roi_Right.Pallidum 0.02326734884828391206
## roi_Right.Hippocampus 0.03186313902495444689
## roi_Right.Amygdala 0.02562611865374391645
## roi_Right.Accumbens.area 0.02424283013897716998
## roi_Right.VentralDC 0.02612452273120478494
## roi_lh_G_and_S_frontomargin 0.02424390693003002084
## roi_lh_G_and_S_occipital_inf 0.03498499368967847301
## roi_lh_G_and_S_paracentral 0.03236905657135460967
## roi_lh_G_and_S_subcentral 0.03801333351590827081
## roi_lh_G_and_S_transv_frontopol 0.02291042576628239680
## roi_lh_G_and_S_cingul.Ant 0.04015710639211041155
## roi_lh_G_and_S_cingul.Mid.Ant 0.03741679430368499704
## roi_lh_G_and_S_cingul.Mid.Post 0.03670441007365443653
## roi_lh_G_cingul.Post.dorsal 0.03499955480252105872
## roi_lh_G_cingul.Post.ventral 0.02805382140742967295
## roi_lh_G_cuneus 0.04445389858872001582
## roi_lh_G_front_inf.Opercular 0.03782138917764220343
## roi_lh_G_front_inf.Orbital 0.02378712385461861575
## roi_lh_G_front_inf.Triangul 0.03095648179475042616
## roi_lh_G_front_middle 0.04885280922847451412
## roi_lh_G_front_sup 0.05631918850202335264
## roi_lh_G_Ins_lg_and_S_cent_ins 0.03123523322559123086
## roi_lh_G_insular_short 0.03153972307614961307
## roi_lh_G_occipital_middle 0.03827752790607135552
## roi_lh_G_occipital_sup 0.03780731687319049961
## roi_lh_G_oc.temp_lat.fusifor 0.03308820692380676221
## roi_lh_G_oc.temp_med.Lingual 0.04853991478305191842
## roi_lh_G_oc.temp_med.Parahip 0.02194215339278950128
## roi_lh_G_orbital 0.02571678319915044961
## roi_lh_G_pariet_inf.Angular 0.04563584225669104627
## roi_lh_G_pariet_inf.Supramar 0.04223316792522971430
## roi_lh_G_parietal_sup 0.04410233884127390258
## roi_lh_G_postcentral 0.04358307169217014859
## roi_lh_G_precentral 0.04467105431710172159
## roi_lh_G_precuneus 0.04629031763053293586
## roi_lh_G_rectus 0.02174660312364970829
## roi_lh_G_subcallosal 0.02263051462813885084
## roi_lh_G_temp_sup.G_T_transv 0.02946612124384470274
## roi_lh_G_temp_sup.Lateral 0.03029675593926029267
## roi_lh_G_temp_sup.Plan_polar 0.02353369315977707488
## roi_lh_G_temp_sup.Plan_tempo 0.03024190724023622170
## roi_lh_G_temporal_inf 0.02226533863349853051
## roi_lh_G_temporal_middle 0.02564410925238447617
## roi_lh_Lat_Fis.ant.Horizont 0.02369340158343016811
## roi_lh_Lat_Fis.ant.Vertical 0.02233508261634072067
## roi_lh_Lat_Fis.post 0.03749568283302279897
## roi_lh_Pole_occipital 0.02917404052191484298
## roi_lh_Pole_temporal 0.02440950701663549202
## roi_lh_S_calcarine 0.05034902740717630415
## roi_lh_S_central 0.04845016364823095945
## roi_lh_S_cingul.Marginalis 0.03342821536922090109
## roi_lh_S_circular_insula_ant 0.02989585142577418780
## roi_lh_S_circular_insula_inf 0.03284662344909109605
## roi_lh_S_circular_insula_sup 0.03762780709400883467
## roi_lh_S_collat_transv_ant 0.02057741783174552377
## roi_lh_S_collat_transv_post 0.02853622590437551385
## roi_lh_S_front_inf 0.03877292412812203409
## roi_lh_S_front_middle 0.03593252583987504439
## roi_lh_S_front_sup 0.04407764685893626744
## roi_lh_S_interm_prim.Jensen 0.02795023560972039606
## roi_lh_S_intrapariet_and_P_trans 0.04437948343110049293
## roi_lh_S_oc_middle_and_Lunatus 0.03429962118526326542
## roi_lh_S_oc_sup_and_transversal 0.04035866396616210466
## roi_lh_S_occipital_ant 0.02982881980429992475
## roi_lh_S_oc.temp_lat 0.02861151848487899704
## roi_lh_S_oc.temp_med_and_Lingual 0.03775040187417103010
## roi_lh_S_orbital_lateral 0.02557904099683192337
## roi_lh_S_orbital_med.olfact 0.02142125901620976422
## roi_lh_S_orbital.H_Shaped 0.02845912010708764525
## roi_lh_S_parieto_occipital 0.03939916967209613347
## roi_lh_S_pericallosal 0.03734255775870513883
## roi_lh_S_postcentral 0.03730612482056724216
## roi_lh_S_precentral.inf.part 0.03957221163350137239
## roi_lh_S_precentral.sup.part 0.03290984280732334177
## roi_lh_S_suborbital 0.02600908184363911330
## roi_lh_S_subparietal 0.03351039417672585508
## roi_lh_S_temporal_inf 0.02338844682415765208
## roi_lh_S_temporal_sup 0.04132179943594301019
## roi_lh_S_temporal_transverse 0.02633742213588468814
## roi_rh_G_and_S_frontomargin 0.02329872167599779387
## roi_rh_G_and_S_occipital_inf 0.03281920228600784112
## roi_rh_G_and_S_paracentral 0.03249407796990792796
## roi_rh_G_and_S_subcentral 0.03641116877675910912
## roi_rh_G_and_S_transv_frontopol 0.02468272167114939769
## roi_rh_G_and_S_cingul.Ant 0.03809951464161196594
## roi_rh_G_and_S_cingul.Mid.Ant 0.03780853896110410867
## roi_rh_G_and_S_cingul.Mid.Post 0.03752151492620676987
## roi_rh_G_cingul.Post.dorsal 0.03443444306303389962
## roi_rh_G_cingul.Post.ventral 0.02954534300294875057
## roi_rh_G_cuneus 0.04062353504329531406
## roi_rh_G_front_inf.Opercular 0.03657515910292990363
## roi_rh_G_front_inf.Orbital 0.02462626260165058992
## roi_rh_G_front_inf.Triangul 0.03146826775836233242
## roi_rh_G_front_middle 0.04945599321021364181
## roi_rh_G_front_sup 0.05050095745233817990
## roi_rh_G_Ins_lg_and_S_cent_ins 0.03024378600536735406
## roi_rh_G_insular_short 0.03121193154951108426
## roi_rh_G_occipital_middle 0.03984906946480461232
## roi_rh_G_occipital_sup 0.03855912171784179471
## roi_rh_G_oc.temp_lat.fusifor 0.02959418363798841517
## roi_rh_G_oc.temp_med.Lingual 0.04947070728746837120
## roi_rh_G_oc.temp_med.Parahip 0.02189059250002741222
## roi_rh_G_orbital 0.02692330329488351950
## roi_rh_G_pariet_inf.Angular 0.04681238583250715152
## roi_rh_G_pariet_inf.Supramar 0.03916725432427168446
## roi_rh_G_parietal_sup 0.03992771479458961242
## roi_rh_G_postcentral 0.04434156882663216337
## roi_rh_G_precentral 0.04266943760911798972
## roi_rh_G_precuneus 0.04479410541277694530
## roi_rh_G_rectus 0.02088799413779220820
## roi_rh_G_subcallosal 0.02150534508020609734
## roi_rh_G_temp_sup.G_T_transv 0.02894721144832470075
## roi_rh_G_temp_sup.Lateral 0.02912260340288247776
## roi_rh_G_temp_sup.Plan_polar 0.02433115659156450186
## roi_rh_G_temp_sup.Plan_tempo 0.03153649365926415593
## roi_rh_G_temporal_inf 0.02241837735043616248
## roi_rh_G_temporal_middle 0.02665793900122852625
## roi_rh_Lat_Fis.ant.Horizont 0.02501077982647486112
## roi_rh_Lat_Fis.ant.Vertical 0.02280886756163550896
## roi_rh_Lat_Fis.post 0.03880473076201389204
## roi_rh_Pole_occipital 0.03421423015773167320
## roi_rh_Pole_temporal 0.02418243797189643940
## roi_rh_S_calcarine 0.05160984874798812960
## roi_rh_S_central 0.04783487896996239941
## roi_rh_S_cingul.Marginalis 0.03232925700083557480
## roi_rh_S_circular_insula_ant 0.03192275055610789558
## roi_rh_S_circular_insula_inf 0.03087925066958848927
## roi_rh_S_circular_insula_sup 0.03374552659766562324
## roi_rh_S_collat_transv_ant 0.02032728873182348961
## roi_rh_S_collat_transv_post 0.02942127833391260799
## roi_rh_S_front_inf 0.03753997647932689335
## roi_rh_S_front_middle 0.04052697514608587237
## roi_rh_S_front_sup 0.04167644431530644761
## roi_rh_S_interm_prim.Jensen 0.02964518743747439344
## roi_rh_S_intrapariet_and_P_trans 0.04259933918890899951
## roi_rh_S_oc_middle_and_Lunatus 0.03464438237246675323
## roi_rh_S_oc_sup_and_transversal 0.04146651811381556890
## roi_rh_S_occipital_ant 0.02859632786037229896
## roi_rh_S_oc.temp_lat 0.02481801312877721447
## roi_rh_S_oc.temp_med_and_Lingual 0.03714296867892835641
## roi_rh_S_orbital_lateral 0.02585463898718546455
## roi_rh_S_orbital_med.olfact 0.02208498586291920626
## roi_rh_S_orbital.H_Shaped 0.02899786185886317480
## roi_rh_S_parieto_occipital 0.03970852349174397444
## roi_rh_S_pericallosal 0.03983710381789809518
## roi_rh_S_postcentral 0.03410919377375777606
## roi_rh_S_precentral.inf.part 0.03803899872330807758
## roi_rh_S_precentral.sup.part 0.03329222800014788181
## roi_rh_S_suborbital 0.02221840783728454630
## roi_rh_S_subparietal 0.03476836806965011295
## roi_rh_S_temporal_inf 0.02318244497400098747
## roi_rh_S_temporal_sup 0.04360018587890156921
## roi_rh_S_temporal_transverse 0.02653897161249051811
## t value Pr(>|t|)
## (Intercept) 0.000 1.00000
## roi_Left.Cerebellum.Cortex 0.291 0.77142
## roi_Left.Thalamus.Proper 0.278 0.78123
## roi_Left.Caudate 0.262 0.79368
## roi_Left.Putamen 0.228 0.81955
## roi_Left.Pallidum -1.163 0.24490
## roi_Brain.Stem -0.570 0.56844
## roi_Left.Hippocampus -2.381 0.01734 *
## roi_Left.Amygdala 2.416 0.01576 *
## roi_Left.Accumbens.area -0.944 0.34526
## roi_Left.VentralDC 2.891 0.00387 **
## roi_Right.Cerebellum.Cortex 1.084 0.27865
## roi_Right.Thalamus.Proper -1.096 0.27313
## roi_Right.Caudate -0.556 0.57823
## roi_Right.Putamen -0.234 0.81527
## roi_Right.Pallidum 0.319 0.75007
## roi_Right.Hippocampus 1.101 0.27078
## roi_Right.Amygdala -0.751 0.45295
## roi_Right.Accumbens.area 0.360 0.71912
## roi_Right.VentralDC 1.101 0.27108
## roi_lh_G_and_S_frontomargin 0.355 0.72256
## roi_lh_G_and_S_occipital_inf 0.600 0.54839
## roi_lh_G_and_S_paracentral 0.081 0.93525
## roi_lh_G_and_S_subcentral -0.208 0.83551
## roi_lh_G_and_S_transv_frontopol 0.194 0.84655
## roi_lh_G_and_S_cingul.Ant 0.895 0.37102
## roi_lh_G_and_S_cingul.Mid.Ant 0.712 0.47625
## roi_lh_G_and_S_cingul.Mid.Post -1.451 0.14697
## roi_lh_G_cingul.Post.dorsal -2.475 0.01338 *
## roi_lh_G_cingul.Post.ventral -0.717 0.47341
## roi_lh_G_cuneus 2.391 0.01687 *
## roi_lh_G_front_inf.Opercular 1.320 0.18689
## roi_lh_G_front_inf.Orbital -0.506 0.61266
## roi_lh_G_front_inf.Triangul -0.595 0.55166
## roi_lh_G_front_middle -0.328 0.74293
## roi_lh_G_front_sup -0.485 0.62802
## roi_lh_G_Ins_lg_and_S_cent_ins -1.266 0.20559
## roi_lh_G_insular_short 0.949 0.34271
## roi_lh_G_occipital_middle 0.758 0.44828
## roi_lh_G_occipital_sup -1.032 0.30226
## roi_lh_G_oc.temp_lat.fusifor 0.241 0.80956
## roi_lh_G_oc.temp_med.Lingual 1.004 0.31547
## roi_lh_G_oc.temp_med.Parahip 1.662 0.09672 .
## roi_lh_G_orbital -2.433 0.01505 *
## roi_lh_G_pariet_inf.Angular -2.677 0.00747 **
## roi_lh_G_pariet_inf.Supramar -0.696 0.48640
## roi_lh_G_parietal_sup 2.662 0.00780 **
## roi_lh_G_postcentral 1.494 0.13541
## roi_lh_G_precentral -0.437 0.66207
## roi_lh_G_precuneus 3.027 0.00249 **
## roi_lh_G_rectus 2.248 0.02468 *
## roi_lh_G_subcallosal -0.713 0.47584
## roi_lh_G_temp_sup.G_T_transv 0.200 0.84175
## roi_lh_G_temp_sup.Lateral 0.080 0.93613
## roi_lh_G_temp_sup.Plan_polar -2.209 0.02723 *
## roi_lh_G_temp_sup.Plan_tempo 0.551 0.58157
## roi_lh_G_temporal_inf -1.083 0.27906
## roi_lh_G_temporal_middle -0.639 0.52277
## roi_lh_Lat_Fis.ant.Horizont 0.810 0.41813
## roi_lh_Lat_Fis.ant.Vertical 1.272 0.20349
## roi_lh_Lat_Fis.post -1.528 0.12656
## roi_lh_Pole_occipital 0.557 0.57764
## roi_lh_Pole_temporal -1.001 0.31696
## roi_lh_S_calcarine -0.378 0.70560
## roi_lh_S_central -1.879 0.06041 .
## roi_lh_S_cingul.Marginalis -0.861 0.38914
## roi_lh_S_circular_insula_ant -1.230 0.21875
## roi_lh_S_circular_insula_inf -0.908 0.36407
## roi_lh_S_circular_insula_sup -0.115 0.90807
## roi_lh_S_collat_transv_ant -0.655 0.51265
## roi_lh_S_collat_transv_post -0.347 0.72837
## roi_lh_S_front_inf 1.783 0.07464 .
## roi_lh_S_front_middle -2.019 0.04359 *
## roi_lh_S_front_sup 3.011 0.00263 **
## roi_lh_S_interm_prim.Jensen 1.186 0.23581
## roi_lh_S_intrapariet_and_P_trans -1.237 0.21606
## roi_lh_S_oc_middle_and_Lunatus -1.322 0.18633
## roi_lh_S_oc_sup_and_transversal 0.016 0.98748
## roi_lh_S_occipital_ant 0.699 0.48435
## roi_lh_S_oc.temp_lat 0.204 0.83872
## roi_lh_S_oc.temp_med_and_Lingual 0.946 0.34423
## roi_lh_S_orbital_lateral 0.468 0.63987
## roi_lh_S_orbital_med.olfact 0.794 0.42751
## roi_lh_S_orbital.H_Shaped -1.083 0.27880
## roi_lh_S_parieto_occipital -1.694 0.09031 .
## roi_lh_S_pericallosal -0.289 0.77229
## roi_lh_S_postcentral -0.988 0.32348
## roi_lh_S_precentral.inf.part 0.884 0.37656
## roi_lh_S_precentral.sup.part 1.515 0.12999
## roi_lh_S_suborbital -0.826 0.40909
## roi_lh_S_subparietal -0.395 0.69295
## roi_lh_S_temporal_inf -1.171 0.24189
## roi_lh_S_temporal_sup 0.890 0.37349
## roi_lh_S_temporal_transverse 0.323 0.74704
## roi_rh_G_and_S_frontomargin 1.669 0.09523 .
## roi_rh_G_and_S_occipital_inf -0.104 0.91725
## roi_rh_G_and_S_paracentral -1.207 0.22734
## roi_rh_G_and_S_subcentral -0.977 0.32863
## roi_rh_G_and_S_transv_frontopol -0.707 0.47942
## roi_rh_G_and_S_cingul.Ant 0.819 0.41265
## roi_rh_G_and_S_cingul.Mid.Ant 1.750 0.08021 .
## roi_rh_G_and_S_cingul.Mid.Post 1.311 0.18982
## roi_rh_G_cingul.Post.dorsal 1.220 0.22238
## roi_rh_G_cingul.Post.ventral -1.645 0.10017
## roi_rh_G_cuneus -1.038 0.29944
## roi_rh_G_front_inf.Opercular 0.919 0.35842
## roi_rh_G_front_inf.Orbital -2.209 0.02725 *
## roi_rh_G_front_inf.Triangul -0.517 0.60491
## roi_rh_G_front_middle 1.744 0.08122 .
## roi_rh_G_front_sup -2.917 0.00357 **
## roi_rh_G_Ins_lg_and_S_cent_ins -1.169 0.24239
## roi_rh_G_insular_short 2.488 0.01290 *
## roi_rh_G_occipital_middle -1.295 0.19530
## roi_rh_G_occipital_sup -0.510 0.61019
## roi_rh_G_oc.temp_lat.fusifor 0.222 0.82433
## roi_rh_G_oc.temp_med.Lingual 0.515 0.60672
## roi_rh_G_oc.temp_med.Parahip 0.682 0.49547
## roi_rh_G_orbital -0.597 0.55039
## roi_rh_G_pariet_inf.Angular 0.350 0.72663
## roi_rh_G_pariet_inf.Supramar -3.215 0.00132 **
## roi_rh_G_parietal_sup -0.591 0.55483
## roi_rh_G_postcentral 0.825 0.40940
## roi_rh_G_precentral 1.558 0.11934
## roi_rh_G_precuneus 2.689 0.00720 **
## roi_rh_G_rectus 0.840 0.40082
## roi_rh_G_subcallosal -0.480 0.63126
## roi_rh_G_temp_sup.G_T_transv 1.565 0.11761
## roi_rh_G_temp_sup.Lateral 0.960 0.33721
## roi_rh_G_temp_sup.Plan_polar 0.823 0.41077
## roi_rh_G_temp_sup.Plan_tempo -0.679 0.49741
## roi_rh_G_temporal_inf -1.678 0.09348 .
## roi_rh_G_temporal_middle 0.300 0.76384
## roi_rh_Lat_Fis.ant.Horizont -0.684 0.49380
## roi_rh_Lat_Fis.ant.Vertical -0.853 0.39353
## roi_rh_Lat_Fis.post 0.629 0.52956
## roi_rh_Pole_occipital -1.988 0.04693 *
## roi_rh_Pole_temporal 0.027 0.97873
## roi_rh_S_calcarine 1.318 0.18753
## roi_rh_S_central 0.376 0.70721
## roi_rh_S_cingul.Marginalis -0.208 0.83514
## roi_rh_S_circular_insula_ant 1.588 0.11239
## roi_rh_S_circular_insula_inf 0.112 0.91108
## roi_rh_S_circular_insula_sup -0.579 0.56250
## roi_rh_S_collat_transv_ant 1.786 0.07413 .
## roi_rh_S_collat_transv_post -1.482 0.13854
## roi_rh_S_front_inf -1.979 0.04789 *
## roi_rh_S_front_middle -0.693 0.48817
## roi_rh_S_front_sup 1.970 0.04897 *
## roi_rh_S_interm_prim.Jensen 0.049 0.96068
## roi_rh_S_intrapariet_and_P_trans 3.070 0.00216 **
## roi_rh_S_oc_middle_and_Lunatus 1.997 0.04596 *
## roi_rh_S_oc_sup_and_transversal -1.757 0.07895 .
## roi_rh_S_occipital_ant 1.389 0.16490
## roi_rh_S_oc.temp_lat -1.078 0.28106
## roi_rh_S_oc.temp_med_and_Lingual -1.435 0.15154
## roi_rh_S_orbital_lateral -1.735 0.08278 .
## roi_rh_S_orbital_med.olfact -0.255 0.79893
## roi_rh_S_orbital.H_Shaped 1.644 0.10023
## roi_rh_S_parieto_occipital -1.057 0.29059
## roi_rh_S_pericallosal -0.151 0.88004
## roi_rh_S_postcentral -1.425 0.15434
## roi_rh_S_precentral.inf.part 0.172 0.86379
## roi_rh_S_precentral.sup.part -1.231 0.21835
## roi_rh_S_suborbital -1.864 0.06246 .
## roi_rh_S_subparietal -0.946 0.34440
## roi_rh_S_temporal_inf 1.098 0.27236
## roi_rh_S_temporal_sup -0.254 0.79931
## roi_rh_S_temporal_transverse 0.319 0.75012
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8857 on 2811 degrees of freedom
## Multiple R-squared: 0.2595, Adjusted R-squared: 0.2155
## F-statistic: 5.898 on 167 and 2811 DF, p-value: < 0.00000000000000022
fit_ridge_gfactor <-cfa_resp_names %>%
future_map(.,
~eNetXplorer(x = matrix_train_gfactor ,
y = resp_train_gfactor[[.]][[.]],
alpha = 0,
n_fold = 10,
nlambda.ext = 1000,
nlambda = 1000,
scaled = TRUE,
QF_gaussian = "mse",
seed = 123456))
saveRDS(fit_ridge_gfactor, paste0(anotherFold,'working_memory_tasks/windows/fit_ridge_gfactor_April_08_2022_rmse', '.RData'))
fit_lasso_gfactor <-cfa_resp_names %>%
future_map(.,
~eNetXplorer(x = matrix_train_gfactor ,
y = resp_train_gfactor[[.]][[.]],
alpha = 1,
n_fold = 10,
nlambda.ext = 1000,
nlambda = 1000,
scaled = TRUE,
QF_gaussian = "mse",
seed = 123456))
saveRDS(fit_lasso_gfactor, paste0(anotherFold,'working_memory_tasks/windows/fit_lasso_gfactor_April_08_2021_rmse', '.RData'))
lambdas_ridge <- vector("list",
length = length(cfa_resp_names))
names(lambdas_ridge)<- cfa_resp_names
lambdas_ridge_best <- vector("list",
length = length(cfa_resp_names))
names(lambdas_ridge_best)<- cfa_resp_names
summary_ridge_gfactor <- vector("list",
length = length(cfa_resp_names))
names(summary_ridge_gfactor)<- cfa_resp_names
for(i in 1:length(cfa_resp_names)){
lambdas_ridge[[cfa_resp_names[i]]] <- fit_ridge_gfactor[[cfa_resp_names[i]]][["lambda_values"]]
lambdas_ridge_best[[cfa_resp_names[i]]] <- fit_ridge_gfactor[[cfa_resp_names[i]]][["best_lambda"]]
summary_ridge_gfactor[[cfa_resp_names[i]]]<-
as_tibble(summary(fit_ridge_gfactor[[cfa_resp_names[i]]])[[2]]) %>% slice(1)
}
summary_ridge_gfactor %>% bind_rows() %>%
rename(.,
Alpha = alpha,
`Best-tune lambda` = lambda.max,
`MSE` = QF.est,
`P-value` = model.vs.null.pval) %>%
pander::pander(split.cell = 80, split.table = Inf, justify = 'left')
Alpha | Best-tune lambda | MSE | P-value |
---|---|---|---|
0 | 0.3578 | -0.8115 | 0.0003998 |
lambdas_lasso <- vector("list",
length = length(cfa_resp_names))
names(lambdas_lasso)<- cfa_resp_names
lambdas_lasso_best <- vector("list",
length = length(cfa_resp_names))
names(lambdas_lasso_best)<- cfa_resp_names
summary_lasso_gfactor <- vector("list",
length = length(cfa_resp_names))
names(summary_lasso_gfactor)<- cfa_resp_names
for(i in 1:length(cfa_resp_names)){
lambdas_lasso[[cfa_resp_names[i]]] <- fit_lasso_gfactor[[cfa_resp_names[i]]][["lambda_values"]]
lambdas_lasso_best[[cfa_resp_names[i]]] <- fit_lasso_gfactor[[cfa_resp_names[i]]][["best_lambda"]]
summary_lasso_gfactor[[cfa_resp_names[i]]]<-
as_tibble(summary(fit_lasso_gfactor[[cfa_resp_names[i]]])[[2]]) %>% slice(1)
}
summary_lasso_gfactor %>% bind_rows() %>%
rename(.,
Alpha = alpha,
`Best-tune lambda` = lambda.max,
`MSE` = QF.est,
`P-value` = model.vs.null.pval) %>%
pander::pander(split.cell = 80, split.table = Inf, justify = 'left')
Alpha | Best-tune lambda | MSE | P-value |
---|---|---|---|
1 | 0.01084 | -0.8133 | 0.0003998 |
OLS_gfactor_tidy <- OLS_fit_gfactor$gfactor %>% broom::tidy(.)
gfactor_vif <- OLS_fit_gfactor$gfactor %>% ols_vif_tol() %>% rename("term" = "Variables")
OLS_gfactor_tidy_vif <- OLS_gfactor_tidy %>% left_join(gfactor_vif, by ="term")
enet_gfactor_tidy <- extract_tibble(fit_explorer_gfactor[["gfactor"]],
alpha_index = paste0("a",best_enet_model_list_gfactor[["gfactor"]]$mixture)) %>%
mutate(type = ifelse(type == 'Null', 'Null permuted models', 'Target models')) %>%
rename(term = variable, eNetPval = pvalue)
enet_gfactor_target <- enet_gfactor_tidy %>% filter(type != "Null permuted models")
ridge_gfactor_tidy <- extract_tibble(fit_ridge_gfactor[["gfactor"]],
alpha_index = paste0("a0")) %>%
mutate(type = ifelse(type == 'Null', 'Null permuted models', 'Target models'))
colnames(ridge_gfactor_tidy) <- c("term", "ridgePval", "type", "ridge_wmean" , "ridge_wsd")
ridge_gfactor_target <- ridge_gfactor_tidy %>% filter(type != "Null permuted models")
lasso_gfactor_tidy <- extract_tibble(fit_lasso_gfactor[["gfactor"]],
alpha_index = paste0("a1")) %>%
mutate(type = ifelse(type == 'Null', 'Null permuted models', 'Target models'))
colnames(lasso_gfactor_tidy) <- c("term", "lassoPval", "type", "lasso_wmean" , "lasso_wsd")
lasso_gfactor_target <- lasso_gfactor_tidy %>% filter(type != "Null permuted models")
gfactor_vif_OLS_enet_target <-plyr::join_all(list(enet_gfactor_target,OLS_gfactor_tidy_vif,
ridge_gfactor_target,
lasso_gfactor_target),by ="term",type = "left")
enet_gfactor_target_and_null <-plyr::join_all(list(enet_gfactor_tidy,
ridge_gfactor_tidy,
lasso_gfactor_tidy),
by =c("term","type"),type = "left") %>%
left_join(.,OLS_gfactor_tidy_vif,by ="term")%>%
mutate(significance = case_when(eNetPval <.05 & p.value < .05 & lassoPval <.05 & ridgePval <.05 ~ 'All (14)',
eNetPval <.05 & p.value < .05 & ridgePval <.05 ~ 'Enet & OLS & Ridge ',
p.value < .05 & lassoPval <.05 & ridgePval <.05 ~ 'OLS & Ridge & LASSO',
eNetPval <.05 & p.value < .05 & lassoPval <.05 ~ ' Enet & OLS & LASSO',
eNetPval <.05 & lassoPval <.05 & ridgePval <.05 ~ 'Enet & Ridge & LASSO (6)',
eNetPval <.05 & p.value < .05 ~ 'Enet & OLS',
eNetPval <.05 & ridgePval <.05 ~ 'Enet & Ridge (6)',
eNetPval <.05 & lassoPval <.05 ~ 'Enet & LASSO',
p.value < .05 & lassoPval <.05 ~ 'OLS & LASSO',
p.value < .05 & ridgePval <.05 ~ 'OLS & Ridge (2)',
lassoPval <.05 & ridgePval <.05 ~ 'Ridge & LASSO',
eNetPval <.05 ~ 'Only Enet (1)',
p.value < .05 ~ 'Only OLS (7)',
lassoPval <.05 ~ 'Only LASSO (1)',
ridgePval <.05 ~ 'Only Ridge (4)',
TRUE ~ '>.05 (126)' ))%>%
mutate(significance= as.factor(significance))%>%
mutate(significance = factor(significance,
levels =c('>.05 (126)',
'Only OLS (7)',
'Only Enet (1)',
'Only LASSO (1)',
'Only Ridge (4)',
'OLS & Ridge (2)',
'Enet & Ridge (6)',
'Enet & Ridge & LASSO (6)',
'All (14)',
'Enet & OLS & Ridge ',
' OLS & Ridge & LASSO',
' Enet & OLS & LASSO',
'Enet & OLS',
'Enet & LASSO',
' OLS & LASSO',
' Ridge & LASSO')))
enet_gfactor_null <- enet_gfactor_tidy %>% filter(type == "Null permuted models") %>%
rename(nullWmean = wmean, nullWsd = wsd) %>% select(term, nullWmean, nullWsd)
enet_gfactor_target_renamed <- enet_gfactor_tidy %>%
filter(type != "Null permuted models") %>%
rename(targetWmean = wmean, targetWsd = wsd) %>%
select(term, eNetPval, targetWmean, targetWsd)
enet_gfactor_target_and_null_renamed <- OLS_gfactor_tidy_vif %>%
left_join(enet_gfactor_target_renamed,by ="term") %>%
left_join(enet_gfactor_null, by ="term")
ridge_gfactor_null <- ridge_gfactor_tidy %>% filter(type == "Null permuted models") %>%
rename(ridge_null_Wmean = ridge_wmean, ridge_null_Wsd = ridge_wsd) %>%
select(term, ridge_null_Wmean, ridge_null_Wsd)
ridge_gfactor_target_renamed <- ridge_gfactor_tidy %>%
filter(type != "Null permuted models") %>%
rename(ridge_target_Wmean = ridge_wmean, ridge_target_Wsd = ridge_wsd) %>%
select(term, ridgePval, ridge_target_Wmean, ridge_target_Wsd)
ridge_gfactor_target_and_null_renamed <- left_join(ridge_gfactor_target_renamed,ridge_gfactor_null,by ="term")
lasso_gfactor_null <- lasso_gfactor_tidy %>% filter(type == "Null permuted models") %>%
rename(lasso_null_Wmean = lasso_wmean, lasso_null_Wsd = lasso_wsd) %>%
select(term, lasso_null_Wmean, lasso_null_Wsd)
lasso_gfactor_target_renamed <- lasso_gfactor_tidy %>%
filter(type != "Null permuted models") %>%
rename(lasso_target_Wmean = lasso_wmean, lasso_target_Wsd = lasso_wsd) %>%
select(term, lassoPval, lasso_target_Wmean, lasso_target_Wsd)
lasso_gfactor_target_and_null_renamed <- left_join(lasso_gfactor_target_renamed,lasso_gfactor_null,by ="term")
enet_gfactor_target_and_null_renamed <- plyr::join_all(list(enet_gfactor_target_and_null_renamed,
ridge_gfactor_target_and_null_renamed,
lasso_gfactor_target_and_null_renamed),
by = "term")%>%
mutate(significance = case_when(eNetPval <.05 & p.value < .05 & lassoPval <.05 & ridgePval <.05 ~ 'All (14)',
eNetPval <.05 & p.value < .05 & ridgePval <.05 ~ 'Enet & OLS & Ridge ',
p.value < .05 & lassoPval <.05 & ridgePval <.05 ~ 'OLS & Ridge & LASSO',
eNetPval <.05 & p.value < .05 & lassoPval <.05 ~ ' Enet & OLS & LASSO',
eNetPval <.05 & lassoPval <.05 & ridgePval <.05 ~ 'Enet & Ridge & LASSO (6)',
eNetPval <.05 & p.value < .05 ~ 'Enet & OLS',
eNetPval <.05 & ridgePval <.05 ~ 'Enet & Ridge (6)',
eNetPval <.05 & lassoPval <.05 ~ 'Enet & LASSO',
p.value < .05 & lassoPval <.05 ~ 'OLS & LASSO',
p.value < .05 & ridgePval <.05 ~ 'OLS & Ridge (2)',
lassoPval <.05 & ridgePval <.05 ~ 'Ridge & LASSO',
eNetPval <.05 ~ 'Only Enet (1)',
p.value < .05 ~ 'Only OLS (7)',
lassoPval <.05 ~ 'Only LASSO (1)',
ridgePval <.05 ~ 'Only Ridge (4)',
TRUE ~ '>.05 (126)' ))%>%
mutate(significance= as.factor(significance))%>%
mutate(significance = factor(significance,
levels =c('>.05 (126)',
'Only OLS (7)',
'Only Enet (1)',
'Only LASSO (1)',
'Only Ridge (4)',
'OLS & Ridge (2)',
'Enet & Ridge (6)',
'Enet & Ridge & LASSO (6)',
'All (14)',
'Enet & OLS & Ridge ',
' OLS & Ridge & LASSO',
' Enet & OLS & LASSO',
'Enet & OLS',
'Enet & LASSO',
' OLS & LASSO',
' Ridge & LASSO')))
table(enet_gfactor_target_and_null$significance)/2
##
## >.05 (126) Only OLS (7)
## 126 7
## Only Enet (1) Only LASSO (1)
## 1 1
## Only Ridge (4) OLS & Ridge (2)
## 4 2
## Enet & Ridge (6) Enet & Ridge & LASSO (6)
## 6 6
## All (14) Enet & OLS & Ridge
## 14 0
## OLS & Ridge & LASSO Enet & OLS & LASSO
## 0 0
## Enet & OLS Enet & LASSO
## 0 0
## OLS & LASSO Ridge & LASSO
## 0 0
enet_gfactor_target_and_null_renamed %>% count(significance)
## significance n
## 1 >.05 (126) 127
## 2 Only OLS (7) 7
## 3 Only Enet (1) 1
## 4 Only LASSO (1) 1
## 5 Only Ridge (4) 4
## 6 OLS & Ridge (2) 2
## 7 Enet & Ridge (6) 6
## 8 Enet & Ridge & LASSO (6) 6
## 9 All (14) 14
enet_gfactor_target_and_null_renamed %>% count(significance, VIF>5)
## significance VIF > 5 n
## 1 >.05 (126) FALSE 82
## 2 >.05 (126) TRUE 44
## 3 >.05 (126) NA 1
## 4 Only OLS (7) FALSE 5
## 5 Only OLS (7) TRUE 2
## 6 Only Enet (1) TRUE 1
## 7 Only LASSO (1) TRUE 1
## 8 Only Ridge (4) FALSE 1
## 9 Only Ridge (4) TRUE 3
## 10 OLS & Ridge (2) FALSE 2
## 11 Enet & Ridge (6) FALSE 3
## 12 Enet & Ridge (6) TRUE 3
## 13 Enet & Ridge & LASSO (6) FALSE 2
## 14 Enet & Ridge & LASSO (6) TRUE 4
## 15 All (14) FALSE 5
## 16 All (14) TRUE 9
library("jcolors")
ggplot(enet_gfactor_target_and_null_renamed , aes(x = VIF, y = std.error,
color = significance
#color= p.value<=.05,
)) +
geom_point(size = 5, alpha = 0.4) +
scale_colour_discrete(name="significance") +
# breaks=c("FALSE", "TRUE"),
# labels=c(">.05", "<.05")) +
# geom_linerange() +
guides(color = FALSE) +
theme_light() +
theme(text = element_text(size = 30),
panel.background = element_rect(fill = "grey97"),
panel.border = element_blank()) +
# theme(legend.position="top") +
xlab("Variable Inflation Factor") + ylab("OLS\nStandard Error") +
scale_color_jcolors(palette = "pal8")
ggplot(enet_gfactor_target_and_null_renamed , aes(x = VIF, y = std.error,
color = significance
#color= p.value<=.05,
)) +
geom_point(size = 5, alpha = 0.4) +
scale_colour_discrete(name="significance") +
# breaks=c("FALSE", "TRUE"),
# labels=c(">.05", "<.05")) +
# geom_linerange() +
theme_light() +
theme(text = element_text(size = 30),
panel.background = element_rect(fill = "grey97"),
panel.border = element_blank()) +
# theme(legend.position="top") +
xlab("Variable Inflation Factor") + ylab("OLS\nStandard Error") +
scale_color_jcolors(palette = "pal8")
ggplot(enet_gfactor_target_and_null_renamed,
aes(x = VIF,
y = estimate,
color = significance,
# color= p.value<=.05,
ymin = estimate - (2 * std.error),
ymax = estimate + (2 * std.error))) +
geom_point(size = 5, alpha = 0.4) +
scale_colour_discrete(name="significance") +
# scale_colour_discrete(name="p value",
# breaks=c("FALSE", "TRUE"),
# labels=c("> .05", "< .05")) +
geom_linerange() +
theme_light() +
theme(text = element_text(size = 30),
panel.background = element_rect(fill = "grey97"),
panel.border = element_blank()) +
guides(color = FALSE) +
# theme(legend.position="top") +
xlab("Variable Inflation Factor") + ylab("OLS\nCoefficients ±2SE") +
geom_hline(yintercept = 0) +
scale_color_jcolors(palette = "pal8")
enet_gfactor_target_and_null_renamed %>%
ggplot(aes(x = VIF, y = nullWsd, color= significance, )) +
geom_point(size = 5, alpha = 0.4) +
scale_colour_discrete(name="significance") +
# breaks=c("FALSE", "TRUE"),
# labels=c(">.05", "<.05")) +
# geom_linerange() +
theme_light() +
theme(text = element_text(size = 30),
panel.background = element_rect(fill = "grey97"),
panel.border = element_blank()) +
guides(color = FALSE) +
# theme(legend.position="top") +
xlab("Variable Inflation Factor") + ylab("Elastic Net\nSD of Permuted Null") +
ylim(0, .021)+
scale_color_jcolors(palette = "pal8")
ggplot(enet_gfactor_target_and_null_renamed, aes(x = VIF, y = nullWmean, color= significance,
ymin = nullWmean - (2 * nullWsd), ymax = nullWmean + (2 * nullWsd))) +
geom_point(size = 5, alpha = 0.4) +
scale_colour_discrete(name="significance") +
# breaks=c("FALSE", "TRUE"),
# labels=c(">.05", "< .05")) +
geom_linerange() +
theme_light() +
theme(text = element_text(size = 30),
panel.background = element_rect(fill = "grey97"),
panel.border = element_blank()) +
guides(color = FALSE) +
#theme(legend.position="top") +
xlab("Variable Inflation Factor") + ylab("Elastic Net\nCoefficients of\n Permuted Null±2SD")+
scale_color_jcolors(palette = "pal8")
enet_gfactor_target_and_null_renamed %>%
ggplot(aes(x = VIF, y = ridge_null_Wsd, color= significance, )) +
geom_point(size = 5, alpha = 0.4) +
scale_colour_discrete(name="significance") +
# breaks=c("FALSE", "TRUE"),
# labels=c(">.05", "<.05")) +
# geom_linerange() +
theme_light() +
theme(text = element_text(size = 30),
panel.background = element_rect(fill = "grey97"),
panel.border = element_blank()) +
guides(color = FALSE) +
# theme(legend.position="top") +
xlab("Variable Inflation Factor") + ylab("Ridge \u03b1=0 \u03bb=.36\nSD of Permuted Null") +
ylim(0, .021)+
scale_color_jcolors(palette = "pal8")
ggplot(enet_gfactor_target_and_null_renamed, aes(x = VIF, y = ridge_null_Wmean, color= significance,
ymin = ridge_null_Wmean - (2 * ridge_null_Wsd),
ymax = ridge_null_Wmean + (2 * ridge_null_Wsd))) +
geom_point(size = 5, alpha = 0.4) +
scale_colour_discrete(name="significance") +
# breaks=c("FALSE", "TRUE"),
# labels=c(">.05", "< .05")) +
geom_linerange() +
theme_light() +
theme(text = element_text(size = 30),
panel.background = element_rect(fill = "grey97"),
panel.border = element_blank()) +
guides(color = FALSE) +
#theme(legend.position="top") +
xlab("Variable Inflation Factor") + ylab("Ridge \u03b1=0 \u03bb=.36\nCoefficients of\n Permuted Null±2SD")+
scale_color_jcolors(palette = "pal8")
enet_gfactor_target_and_null_renamed %>%
ggplot(aes(x = VIF, y = lasso_null_Wsd, color= significance, )) +
geom_point(size = 5, alpha = 0.4) +
scale_colour_discrete(name="significance") +
# breaks=c("FALSE", "TRUE"),
# labels=c(">.05", "<.05")) +
# geom_linerange() +
theme_light() +
theme(text = element_text(size = 30),
panel.background = element_rect(fill = "grey97"),
panel.border = element_blank()) +
guides(color = FALSE) +
# theme(legend.position="top") +
xlab("Variable Inflation Factor") + ylab("LASSO \u03b1=1 \u03bb=.01\nSD of Permuted Null") +
ylim(0, .021)+
scale_color_jcolors(palette = "pal8")
ggplot(enet_gfactor_target_and_null_renamed, aes(x = VIF, y = lasso_null_Wmean, color= significance,
ymin = lasso_null_Wmean - (2 * lasso_null_Wsd),
ymax = lasso_null_Wmean + (2 * lasso_null_Wsd))) +
geom_point(size = 5, alpha = 0.4) +
scale_colour_discrete(name="significance") +
# breaks=c("FALSE", "TRUE"),
# labels=c(">.05", "< .05")) +
geom_linerange() +
theme_light() +
theme(text = element_text(size = 30),
panel.background = element_rect(fill = "grey97"),
panel.border = element_blank()) +
guides(color = FALSE) +
#theme(legend.position="top") +
xlab("Variable Inflation Factor") + ylab("LASSO \u03b1=1 \u03bb=.01\nCoefficients of\n Permuted Null±2SD") +
scale_color_jcolors(palette = "pal8")
ggplot(enet_gfactor_target_and_null, aes(x = VIF, y = wmean,
color= significance,
ymin = wmean - (2 * wsd),
ymax = wmean + (2 * wsd),
shape = type)) +
geom_point(size = 5, alpha = 0.4) +
scale_colour_discrete(name="significance") +
# scale_colour_discrete(name="p value",
# breaks=c("FALSE", "TRUE"),
# labels=c("> .05", "< .05")) +
scale_shape_discrete(name="",
breaks=c("Null permuted models", "Target models"),
labels=c("Null", "Target")) +
geom_linerange() +
theme_light() +
theme(text = element_text(size = 30),
panel.background = element_rect(fill = "grey97"),
panel.border = element_blank()) +
guides(color = FALSE) +
#theme(legend.justification=c(1,0), legend.position=c(1,0)) +
theme(legend.position="top") +
xlab("Variable Inflation Factor") + ylab("Elastic Net \u03b1=.05 \u03bb=.13\nCoefficients ± 2SD") +
scale_color_jcolors(palette = "pal8")
ggplot(enet_gfactor_target_and_null, aes(x = VIF, y = ridge_wmean,
color= significance,
ymin = ridge_wmean - (2 * ridge_wsd),
ymax = ridge_wmean + (2 * ridge_wsd),
shape = type)) +
geom_point(size = 5, alpha = 0.4) +
scale_colour_discrete(name="significance") +
# scale_colour_discrete(name="p value",
# breaks=c("FALSE", "TRUE"),
# labels=c("> .05", "< .05")) +
scale_shape_discrete(name="",
breaks=c("Null permuted models", "Target models"),
labels=c("Null", "Target")) +
geom_linerange() +
theme_light() +
theme(text = element_text(size = 30),
panel.background = element_rect(fill = "grey97"),
panel.border = element_blank()) +
guides(color = FALSE) +
#theme(legend.justification=c(1,0), legend.position=c(1,0)) +
theme(legend.position="top") +
xlab("Variable Inflation Factor") + ylab("Ridge \u03b1=0 \u03bb=.36\nCoefficients ± 2SD") +
scale_color_jcolors(palette = "pal8")
ggplot(enet_gfactor_target_and_null, aes(x = VIF, y = lasso_wmean,
color= significance,
ymin = lasso_wmean - (2 * lasso_wsd),
ymax = lasso_wmean + (2 * lasso_wsd),
shape = type)) +
geom_point(size = 5, alpha = 0.4) +
scale_colour_discrete(name="significance") +
# scale_colour_discrete(name="p value",
# breaks=c("FALSE", "TRUE"),
# labels=c("> .05", "< .05")) +
scale_shape_discrete(name="",
breaks=c("Null permuted models", "Target models"),
labels=c("Null", "Target")) +
geom_linerange() +
theme_light() +
theme(text = element_text(size = 30),
panel.background = element_rect(fill = "grey97"),
panel.border = element_blank()) +
guides(color = FALSE) +
#theme(legend.justification=c(1,0), legend.position=c(1,0)) +
theme(legend.position="top") +
xlab("Variable Inflation Factor") + ylab("LASSO \u03b1=1 \u03bb=.01\nCoefficients ± 2SD") +
scale_color_jcolors(palette = "pal8")
ggplot(enet_gfactor_target_and_null, aes(x = VIF, y = wmean,
color= significance,
ymin = wmean - (2 * wsd),
ymax = wmean + (2 * wsd),
shape = type)) +
geom_point(size = 4, alpha = 0.4) +
scale_colour_discrete(name="significance") +
# scale_colour_discrete(name="p value",
# breaks=c("FALSE", "TRUE"),
# labels=c("> .05", "< .05")) +
scale_shape_discrete(name="",
breaks=c("Null permuted models", "Target models"),
labels=c("Null", "Target")) +
geom_linerange(width = 0.2, color = 'black') +
theme_light() +
theme(text = element_text(size = 30),
panel.background = element_rect(fill = "grey97"),
panel.border = element_blank()) +
guides(color = FALSE) +
#theme(legend.justification=c(1,0), legend.position=c(1,0)) +
theme(legend.position="top") +
xlab("Variable Inflation Factor") + ylab("Elastic Net \u03b1=.05 \u03bb=.13\nCoefficients ± 2SD")+
scale_color_jcolors(palette = "pal8")
ggplot(enet_gfactor_target_and_null, aes(x = VIF, y = ridge_wmean,
color= significance,
ymin = ridge_wmean - (2 * ridge_wsd),
ymax = ridge_wmean + (2 * ridge_wsd),
shape = type)) +
geom_point(size = 4, alpha = 0.4) +
scale_colour_discrete(name="significance") +
# scale_colour_discrete(name="p value",
# breaks=c("FALSE", "TRUE"),
# labels=c("> .05", "< .05")) +
scale_shape_discrete(name="",
breaks=c("Null permuted models", "Target models"),
labels=c("Null", "Target")) +
geom_linerange(width = 0.2, color = 'black') +
theme_light() +
theme(text = element_text(size = 30),
panel.background = element_rect(fill = "grey97"),
panel.border = element_blank()) +
guides(color = FALSE) +
#theme(legend.justification=c(1,0), legend.position=c(1,0)) +
theme(legend.position="top") +
xlab("Variable Inflation Factor") + ylab("Ridge \u03b1=0 \u03bb=.36\nCoefficients ± 2SD") +
scale_color_jcolors(palette = "pal8")
ggplot(enet_gfactor_target_and_null, aes(x = VIF, y = lasso_wmean,
color= significance,
ymin = lasso_wmean - (2 * lasso_wsd),
ymax = lasso_wmean + (2 * lasso_wsd),
shape = type)) +
geom_point(size = 4, alpha = 0.4) +
scale_colour_discrete(name="significance") +
# scale_colour_discrete(name="p value",
# breaks=c("FALSE", "TRUE"),
# labels=c("> .05", "< .05")) +
scale_shape_discrete(name="",
breaks=c("Null permuted models", "Target models"),
labels=c("Null", "Target")) +
geom_linerange(width = 0.2, color = 'black') +
theme_light() +
theme(text = element_text(size = 30),
panel.background = element_rect(fill = "grey97"),
panel.border = element_blank()) +
guides(color = FALSE) +
#theme(legend.justification=c(1,0), legend.position=c(1,0)) +
theme(legend.position="top") +
xlab("Variable Inflation Factor") + ylab("LASSO \u03b1=1 \u03bb=.01\nCoefficients ± 2SD") +
scale_color_jcolors(palette = "pal8")
pander::pander(sessionInfo())
R version 4.1.3 (2022-03-10)
Platform: x86_64-w64-mingw32/x64 (64-bit)
locale: LC_COLLATE=English_New Zealand.1252, LC_CTYPE=English_New Zealand.1252, LC_MONETARY=English_New Zealand.1252, LC_NUMERIC=C and LC_TIME=English_New Zealand.1252
attached base packages: stats, graphics, grDevices, utils, datasets, methods and base
other attached packages: jcolors(v.0.0.4), olsrr(v.0.5.3), iml(v.0.10.1), ggsegDesterieux(v.1.0.1.002), ggsegExtra(v.1.5.33.004), ggseg3d(v.1.6.3), ggseg(v.1.6.4), GGally(v.2.1.2), glmnet(v.4.1-3), Matrix(v.1.4-0), fastshap(v.0.0.7), doFuture(v.0.12.0), foreach(v.1.5.2), furrr(v.0.2.3), future(v.1.24.0), eNetXplorer(v.1.1.3), ggdist(v.3.1.1), vip(v.0.3.2), cowplot(v.1.1.1), yardstick(v.0.0.9), workflowsets(v.0.2.1), workflows(v.0.2.6), tune(v.0.2.0), rsample(v.0.1.1), recipes(v.0.2.0), parsnip(v.0.2.1), modeldata(v.0.1.1), infer(v.1.0.0), dials(v.0.1.0), scales(v.1.1.1), broom(v.0.7.12), tidymodels(v.0.2.0), forcats(v.0.5.1), stringr(v.1.4.0), dplyr(v.1.0.8), purrr(v.0.3.4), readr(v.2.1.2), tidyr(v.1.2.0), tibble(v.3.1.6), ggplot2(v.3.3.5) and tidyverse(v.1.3.1)
loaded via a namespace (and not attached): rgl(v.0.108.3), Hmisc(v.4.6-0), svglite(v.2.1.0), corpcor(v.1.6.10), class(v.7.3-20), crayon(v.1.5.1), MASS(v.7.3-55), nlme(v.3.1-155), backports(v.1.4.1), reprex(v.2.0.1), ggcorrplot(v.0.1.3), rlang(v.1.0.2), readxl(v.1.3.1), nloptr(v.2.0.0), extrafontdb(v.1.0), xgboost(v.1.5.2.1), extrafont(v.0.17), bit64(v.4.0.5), glue(v.1.6.2), parallel(v.4.1.3), oro.nifti(v.0.11.0), classInt(v.0.4-3), haven(v.2.4.3), tidyselect(v.1.1.2), RRPP(v.1.2.2), XML(v.3.99-0.9), calibrate(v.1.7.7), sf(v.1.0-7), ggpubr(v.0.4.0), SuppDists(v.1.1-9.7), distributional(v.0.3.0), xtable(v.1.8-4), magrittr(v.2.0.3), evaluate(v.0.15), cli(v.3.2.0), rstudioapi(v.0.13), sp(v.1.4-6), DiceDesign(v.1.9), bslib(v.0.3.1), rpart(v.4.1.16), pbmcapply(v.1.5.0), numform(v.0.7.0), xfun(v.0.30), cluster(v.2.1.2), caTools(v.1.18.2), expm(v.0.999-6), RNifti(v.1.4.0), ape(v.5.6-2), listenv(v.0.8.0), png(v.0.1-7), reshape(v.0.8.8), ipred(v.0.9-12), withr(v.2.5.0), neurobase(v.1.32.1), bitops(v.1.0-7), ranger(v.0.13.1), freesurfer(v.1.6.8), plyr(v.1.8.6), cellranger(v.1.1.0), hardhat(v.0.2.0), e1071(v.1.7-9), pROC(v.1.18.0), coda(v.0.19-4), pillar(v.1.7.0), RcppParallel(v.5.1.5), gplots(v.3.1.1), fs(v.1.5.2), kernlab(v.0.9-29), raster(v.3.5-15), geomorph(v.4.0.3), vctrs(v.0.4.0), pbivnorm(v.0.6.0), ellipsis(v.0.3.2), generics(v.0.1.2), nortest(v.1.0-4), lava(v.1.6.10), rgdal(v.1.5-29), tools(v.4.1.3), foreign(v.0.8-82), munsell(v.0.5.0), proxy(v.0.4-26), fastmap(v.1.1.0), compiler(v.4.1.3), abind(v.1.4-5), stars(v.0.5-5), plotly(v.4.10.0), semPlot(v.1.1.5), prodlim(v.2019.11.13), gridExtra(v.2.3), OpenMx(v.2.20.6), lattice(v.0.20-45), utf8(v.1.2.2), jsonlite(v.1.8.0), arm(v.1.12-2), pbapply(v.1.5-0), carData(v.3.0-5), lazyeval(v.0.2.2), car(v.3.0-12), latticeExtra(v.0.6-29), R.utils(v.2.11.0), goftest(v.1.2-3), checkmate(v.2.0.0), rmarkdown(v.2.13.2), openxlsx(v.4.2.5), webshot(v.0.5.2), pander(v.0.6.4), igraph(v.1.2.11), survival(v.3.2-13), numDeriv(v.2016.8-1.1), yaml(v.2.3.5), timeROC(v.0.4), systemfonts(v.1.0.4), survivalROC(v.1.0.3), htmltools(v.0.5.2), lavaan(v.0.6-10), viridisLite(v.0.4.0), digest(v.0.6.29), assertthat(v.0.2.1), timereg(v.2.0.1), Rttf2pt1(v.1.3.10), lwgeom(v.0.2-8), units(v.0.8-0), future.apply(v.1.8.1), rockchalk(v.1.8.151), data.table(v.1.14.2), R.oo(v.1.24.0), lhs(v.1.1.4), splines(v.4.1.3), Formula(v.1.2-4), labeling(v.0.4.2), pec(v.2022.03.06), hms(v.1.1.1), modelr(v.0.1.8), colorspace(v.2.0-3), base64enc(v.0.1-3), mnormt(v.2.0.2), survcomp(v.1.44.1), shape(v.1.4.6), tmvnsim(v.1.0-2), Metrics(v.0.1.4), nnet(v.7.3-17), sass(v.0.4.0), Rcpp(v.1.0.8), mvtnorm(v.1.1-3), GPfit(v.1.0-8), fansi(v.1.0.3), tzdb(v.0.2.0), parallelly(v.1.30.0), R6(v.2.5.1), grid(v.4.1.3), lifecycle(v.1.0.1), zip(v.2.2.0), ggsignif(v.0.6.3), minqa(v.1.2.4), mi(v.1.0), jquerylib(v.0.1.4), qgraph(v.1.9.2), glasso(v.1.11), prediction(v.0.3.14), RColorBrewer(v.1.1-3), iterators(v.1.0.14), gower(v.1.0.0), htmlwidgets(v.1.5.4), terra(v.1.5-21), rvest(v.1.0.2), globals(v.0.14.0), htmlTable(v.2.4.0), codetools(v.0.2-18), matrixStats(v.0.61.0), lubridate(v.1.8.0), gtools(v.3.9.2), prettyunits(v.1.1.1), psych(v.2.1.9), dbplyr(v.2.1.1), R.methodsS3(v.1.8.1), gtable(v.0.3.0), DBI(v.1.1.2), stats4(v.4.1.3), httr(v.1.4.2), highr(v.0.9), KernSmooth(v.2.23-20), smoothr(v.0.2.2), stringi(v.1.7.6), vroom(v.1.5.7), progress(v.1.2.2), reshape2(v.1.4.4), farver(v.2.1.0), fdrtool(v.1.2.17), magick(v.2.7.3), timeDate(v.3043.102), lisrelToR(v.0.1.4), xml2(v.1.3.3), boot(v.1.3-28), kableExtra(v.1.3.4), rmeta(v.3.0), lme4(v.1.1-28), sem(v.3.1-14), kutils(v.1.70), bit(v.4.0.4), jpeg(v.0.1-9), pkgconfig(v.2.0.3), rstatix(v.0.7.0), bootstrap(v.2019.6) and knitr(v.1.37)